llvm-for-llvmta/lib/Target/ARM/ARMISelLowering.h

937 lines
40 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- ARMISelLowering.h - ARM DAG Lowering Interface -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H
#define LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/MachineValueType.h"
#include <utility>
namespace llvm {
class ARMSubtarget;
class DataLayout;
class FastISel;
class FunctionLoweringInfo;
class GlobalValue;
class InstrItineraryData;
class Instruction;
class MachineBasicBlock;
class MachineInstr;
class SelectionDAG;
class TargetLibraryInfo;
class TargetMachine;
class TargetRegisterInfo;
class VectorType;
namespace ARMISD {
// ARM Specific DAG Nodes
enum NodeType : unsigned {
// Start the numbering where the builtin ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
Wrapper, // Wrapper - A wrapper node for TargetConstantPool,
// TargetExternalSymbol, and TargetGlobalAddress.
WrapperPIC, // WrapperPIC - A wrapper node for TargetGlobalAddress in
// PIC mode.
WrapperJT, // WrapperJT - A wrapper node for TargetJumpTable
// Add pseudo op to model memcpy for struct byval.
COPY_STRUCT_BYVAL,
CALL, // Function call.
CALL_PRED, // Function call that's predicable.
CALL_NOLINK, // Function call with branch not branch-and-link.
tSECALL, // CMSE non-secure function call.
BRCOND, // Conditional branch.
BR_JT, // Jumptable branch.
BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump).
RET_FLAG, // Return with a flag operand.
SERET_FLAG, // CMSE Entry function return with a flag operand.
INTRET_FLAG, // Interrupt return with an LR-offset and a flag operand.
PIC_ADD, // Add with a PC operand and a PIC label.
ASRL, // MVE long arithmetic shift right.
LSRL, // MVE long shift right.
LSLL, // MVE long shift left.
CMP, // ARM compare instructions.
CMN, // ARM CMN instructions.
CMPZ, // ARM compare that sets only Z flag.
CMPFP, // ARM VFP compare instruction, sets FPSCR.
CMPFPE, // ARM VFP signalling compare instruction, sets FPSCR.
CMPFPw0, // ARM VFP compare against zero instruction, sets FPSCR.
CMPFPEw0, // ARM VFP signalling compare against zero instruction, sets FPSCR.
FMSTAT, // ARM fmstat instruction.
CMOV, // ARM conditional move instructions.
SUBS, // Flag-setting subtraction.
SSAT, // Signed saturation
USAT, // Unsigned saturation
BCC_i64,
SRL_FLAG, // V,Flag = srl_flag X -> srl X, 1 + save carry out.
SRA_FLAG, // V,Flag = sra_flag X -> sra X, 1 + save carry out.
RRX, // V = RRX X, Flag -> srl X, 1 + shift in carry flag.
ADDC, // Add with carry
ADDE, // Add using carry
SUBC, // Sub with carry
SUBE, // Sub using carry
LSLS, // Shift left producing carry
VMOVRRD, // double to two gprs.
VMOVDRR, // Two gprs to double.
VMOVSR, // move gpr to single, used for f32 literal constructed in a gpr
EH_SJLJ_SETJMP, // SjLj exception handling setjmp.
EH_SJLJ_LONGJMP, // SjLj exception handling longjmp.
EH_SJLJ_SETUP_DISPATCH, // SjLj exception handling setup_dispatch.
TC_RETURN, // Tail call return pseudo.
THREAD_POINTER,
DYN_ALLOC, // Dynamic allocation on the stack.
MEMBARRIER_MCR, // Memory barrier (MCR)
PRELOAD, // Preload
WIN__CHKSTK, // Windows' __chkstk call to do stack probing.
WIN__DBZCHK, // Windows' divide by zero check
WLS, // Low-overhead loops, While Loop Start
LOOP_DEC, // Really a part of LE, performs the sub
LE, // Low-overhead loops, Loop End
PREDICATE_CAST, // Predicate cast for MVE i1 types
VECTOR_REG_CAST, // Reinterpret the current contents of a vector register
VCMP, // Vector compare.
VCMPZ, // Vector compare to zero.
VTST, // Vector test bits.
// Vector shift by vector
VSHLs, // ...left/right by signed
VSHLu, // ...left/right by unsigned
// Vector shift by immediate:
VSHLIMM, // ...left
VSHRsIMM, // ...right (signed)
VSHRuIMM, // ...right (unsigned)
// Vector rounding shift by immediate:
VRSHRsIMM, // ...right (signed)
VRSHRuIMM, // ...right (unsigned)
VRSHRNIMM, // ...right narrow
// Vector saturating shift by immediate:
VQSHLsIMM, // ...left (signed)
VQSHLuIMM, // ...left (unsigned)
VQSHLsuIMM, // ...left (signed to unsigned)
VQSHRNsIMM, // ...right narrow (signed)
VQSHRNuIMM, // ...right narrow (unsigned)
VQSHRNsuIMM, // ...right narrow (signed to unsigned)
// Vector saturating rounding shift by immediate:
VQRSHRNsIMM, // ...right narrow (signed)
VQRSHRNuIMM, // ...right narrow (unsigned)
VQRSHRNsuIMM, // ...right narrow (signed to unsigned)
// Vector shift and insert:
VSLIIMM, // ...left
VSRIIMM, // ...right
// Vector get lane (VMOV scalar to ARM core register)
// (These are used for 8- and 16-bit element types only.)
VGETLANEu, // zero-extend vector extract element
VGETLANEs, // sign-extend vector extract element
// Vector move immediate and move negated immediate:
VMOVIMM,
VMVNIMM,
// Vector move f32 immediate:
VMOVFPIMM,
// Move H <-> R, clearing top 16 bits
VMOVrh,
VMOVhr,
// Vector duplicate:
VDUP,
VDUPLANE,
// Vector shuffles:
VEXT, // extract
VREV64, // reverse elements within 64-bit doublewords
VREV32, // reverse elements within 32-bit words
VREV16, // reverse elements within 16-bit halfwords
VZIP, // zip (interleave)
VUZP, // unzip (deinterleave)
VTRN, // transpose
VTBL1, // 1-register shuffle with mask
VTBL2, // 2-register shuffle with mask
VMOVN, // MVE vmovn
// MVE Saturating truncates
VQMOVNs, // Vector (V) Saturating (Q) Move and Narrow (N), signed (s)
VQMOVNu, // Vector (V) Saturating (Q) Move and Narrow (N), unsigned (u)
// MVE float <> half converts
VCVTN, // MVE vcvt f32 -> f16, truncating into either the bottom or top lanes
VCVTL, // MVE vcvt f16 -> f32, extending from either the bottom or top lanes
// Vector multiply long:
VMULLs, // ...signed
VMULLu, // ...unsigned
VQDMULH, // MVE vqdmulh instruction
// MVE reductions
VADDVs, // sign- or zero-extend the elements of a vector to i32,
VADDVu, // add them all together, and return an i32 of their sum
VADDVps, // Same as VADDV[su] but with a v4i1 predicate mask
VADDVpu,
VADDLVs, // sign- or zero-extend elements to i64 and sum, returning
VADDLVu, // the low and high 32-bit halves of the sum
VADDLVAs, // Same as VADDLV[su] but also add an input accumulator
VADDLVAu, // provided as low and high halves
VADDLVps, // Same as VADDLV[su] but with a v4i1 predicate mask
VADDLVpu,
VADDLVAps, // Same as VADDLVp[su] but with a v4i1 predicate mask
VADDLVApu,
VMLAVs, // sign- or zero-extend the elements of two vectors to i32, multiply them
VMLAVu, // and add the results together, returning an i32 of their sum
VMLAVps, // Same as VMLAV[su] with a v4i1 predicate mask
VMLAVpu,
VMLALVs, // Same as VMLAV but with i64, returning the low and
VMLALVu, // high 32-bit halves of the sum
VMLALVps, // Same as VMLALV[su] with a v4i1 predicate mask
VMLALVpu,
VMLALVAs, // Same as VMLALV but also add an input accumulator
VMLALVAu, // provided as low and high halves
VMLALVAps, // Same as VMLALVA[su] with a v4i1 predicate mask
VMLALVApu,
VMINVu, // Find minimum unsigned value of a vector and register
VMINVs, // Find minimum signed value of a vector and register
VMAXVu, // Find maximum unsigned value of a vector and register
VMAXVs, // Find maximum signed value of a vector and register
SMULWB, // Signed multiply word by half word, bottom
SMULWT, // Signed multiply word by half word, top
UMLAL, // 64bit Unsigned Accumulate Multiply
SMLAL, // 64bit Signed Accumulate Multiply
UMAAL, // 64-bit Unsigned Accumulate Accumulate Multiply
SMLALBB, // 64-bit signed accumulate multiply bottom, bottom 16
SMLALBT, // 64-bit signed accumulate multiply bottom, top 16
SMLALTB, // 64-bit signed accumulate multiply top, bottom 16
SMLALTT, // 64-bit signed accumulate multiply top, top 16
SMLALD, // Signed multiply accumulate long dual
SMLALDX, // Signed multiply accumulate long dual exchange
SMLSLD, // Signed multiply subtract long dual
SMLSLDX, // Signed multiply subtract long dual exchange
SMMLAR, // Signed multiply long, round and add
SMMLSR, // Signed multiply long, subtract and round
// Single Lane QADD8 and QADD16. Only the bottom lane. That's what the b stands for.
QADD8b,
QSUB8b,
QADD16b,
QSUB16b,
// Operands of the standard BUILD_VECTOR node are not legalized, which
// is fine if BUILD_VECTORs are always lowered to shuffles or other
// operations, but for ARM some BUILD_VECTORs are legal as-is and their
// operands need to be legalized. Define an ARM-specific version of
// BUILD_VECTOR for this purpose.
BUILD_VECTOR,
// Bit-field insert
BFI,
// Vector OR with immediate
VORRIMM,
// Vector AND with NOT of immediate
VBICIMM,
// Pseudo vector bitwise select
VBSP,
// Pseudo-instruction representing a memory copy using ldm/stm
// instructions.
MEMCPY,
// V8.1MMainline condition select
CSINV, // Conditional select invert.
CSNEG, // Conditional select negate.
CSINC, // Conditional select increment.
// Vector load N-element structure to all lanes:
VLD1DUP = ISD::FIRST_TARGET_MEMORY_OPCODE,
VLD2DUP,
VLD3DUP,
VLD4DUP,
// NEON loads with post-increment base updates:
VLD1_UPD,
VLD2_UPD,
VLD3_UPD,
VLD4_UPD,
VLD2LN_UPD,
VLD3LN_UPD,
VLD4LN_UPD,
VLD1DUP_UPD,
VLD2DUP_UPD,
VLD3DUP_UPD,
VLD4DUP_UPD,
// NEON stores with post-increment base updates:
VST1_UPD,
VST2_UPD,
VST3_UPD,
VST4_UPD,
VST2LN_UPD,
VST3LN_UPD,
VST4LN_UPD,
// Load/Store of dual registers
LDRD,
STRD
};
} // end namespace ARMISD
/// Define some predicates that are used for node matching.
namespace ARM {
bool isBitFieldInvertedMask(unsigned v);
} // end namespace ARM
//===--------------------------------------------------------------------===//
// ARMTargetLowering - ARM Implementation of the TargetLowering interface
class ARMTargetLowering : public TargetLowering {
public:
explicit ARMTargetLowering(const TargetMachine &TM,
const ARMSubtarget &STI);
unsigned getJumpTableEncoding() const override;
bool useSoftFloat() const override;
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const override;
const char *getTargetNodeName(unsigned Opcode) const override;
bool isSelectSupported(SelectSupportKind Kind) const override {
// ARM does not support scalar condition selects on vectors.
return (Kind != ScalarCondVectorVal);
}
bool isReadOnly(const GlobalValue *GV) const;
/// getSetCCResultType - Return the value type to use for ISD::SETCC.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const override;
void AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const override;
SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const;
SDValue PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const;
SDValue PerformCMOVToBFICombine(SDNode *N, SelectionDAG &DAG) const;
SDValue PerformIntrinsicCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
bool SimplifyDemandedBitsForTargetNode(SDValue Op,
const APInt &OriginalDemandedBits,
const APInt &OriginalDemandedElts,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth) const override;
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override;
/// allowsMisalignedMemoryAccesses - Returns true if the target allows
/// unaligned memory accesses of the specified type. Returns whether it
/// is "fast" by reference in the second argument.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
unsigned Align,
MachineMemOperand::Flags Flags,
bool *Fast) const override;
EVT getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
bool isTruncateFree(Type *SrcTy, Type *DstTy) const override;
bool isTruncateFree(EVT SrcVT, EVT DstVT) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool shouldSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const override;
Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const override;
bool isFNegFree(EVT VT) const override;
bool isVectorLoadExtDesirable(SDValue ExtVal) const override;
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AS,
Instruction *I = nullptr) const override;
/// getScalingFactorCost - Return the cost of the scaling used in
/// addressing mode represented by AM.
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, the return value must be negative.
int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
unsigned AS) const override;
bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
/// Returns true if the addressing mode representing by AM is legal
/// for the Thumb1 target, for a load/store of the specified type.
bool isLegalT1ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can
/// compare a register against the immediate without having to materialize
/// the immediate into a register.
bool isLegalICmpImmediate(int64_t Imm) const override;
/// isLegalAddImmediate - Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can
/// add a register and the immediate without having to materialize
/// the immediate into a register.
bool isLegalAddImmediate(int64_t Imm) const override;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
SDValue &Offset, ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const override;
bool ExpandInlineAsm(CallInst *CI) const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
const char *LowerXConstraint(EVT ConstraintVT) const override;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
/// true it means one of the asm constraint of the inline asm instruction
/// being processed is 'm'.
void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
if (ConstraintCode == "Q")
return InlineAsm::Constraint_Q;
else if (ConstraintCode == "o")
return InlineAsm::Constraint_o;
else if (ConstraintCode.size() == 2) {
if (ConstraintCode[0] == 'U') {
switch(ConstraintCode[1]) {
default:
break;
case 'm':
return InlineAsm::Constraint_Um;
case 'n':
return InlineAsm::Constraint_Un;
case 'q':
return InlineAsm::Constraint_Uq;
case 's':
return InlineAsm::Constraint_Us;
case 't':
return InlineAsm::Constraint_Ut;
case 'v':
return InlineAsm::Constraint_Uv;
case 'y':
return InlineAsm::Constraint_Uy;
}
}
}
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
const ARMSubtarget* getSubtarget() const {
return Subtarget;
}
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
const TargetRegisterClass *
getRegClassFor(MVT VT, bool isDivergent = false) const override;
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
unsigned &PrefAlign) const override;
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
Sched::Preference getSchedulingPreference(SDNode *N) const override;
bool
isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const override;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize = false) const override;
bool getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
/// Return true if EXTRACT_SUBVECTOR is cheap for this result type
/// with this index.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const override;
bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
bool MathUsed) const override {
// Using overflow ops for overflow checks only should beneficial on ARM.
return TargetLowering::shouldFormOverflowOp(Opcode, VT, true);
}
/// Returns true if an argument of type Ty needs to be passed in a
/// contiguous block of registers in calling convention CallConv.
bool functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
Register
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
Instruction *makeDMB(IRBuilder<> &Builder, ARM_MB::MemBOpt Domain) const;
Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const override;
void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const override;
Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
unsigned getMaxSupportedInterleaveFactor() const override;
bool lowerInterleavedLoad(LoadInst *LI,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices,
unsigned Factor) const override;
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const override;
bool shouldInsertFencesForAtomic(const Instruction *I) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
bool useLoadStackGuardNode() const override;
void insertSSPDeclarations(Module &M) const override;
Value *getSDagStackGuard(const Module &M) const override;
Function *getSSPStackGuardCheck(const Module &M) const override;
bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
unsigned &Cost) const override;
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const SelectionDAG &DAG) const override {
// Do not merge to larger than i32.
return (MemVT.getSizeInBits() <= 32);
}
bool isCheapToSpeculateCttz() const override;
bool isCheapToSpeculateCtlz() const override;
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
return VT.isScalarInteger();
}
bool supportSwiftError() const override {
return true;
}
bool hasStandaloneRem(EVT VT) const override {
return HasStandaloneRem;
}
bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isVarArg) const;
CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC, bool isVarArg) const;
/// Returns true if \p VecTy is a legal interleaved access type. This
/// function checks the vector element type and the overall width of the
/// vector.
bool isLegalInterleavedAccessType(unsigned Factor, FixedVectorType *VecTy,
const DataLayout &DL) const;
bool alignLoopsWithOptSize() const override;
/// Returns the number of interleaved accesses that will be generated when
/// lowering accesses of the given type.
unsigned getNumInterleavedAccesses(VectorType *VecTy,
const DataLayout &DL) const;
void finalizeLowering(MachineFunction &MF) const override;
/// Return the correct alignment for the current calling convention.
Align getABIAlignmentForCallingConv(Type *ArgTy,
DataLayout DL) const override;
bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const override;
bool shouldFoldConstantShiftPairToMask(const SDNode *N,
CombineLevel Level) const override;
bool preferIncOfAddToSubOfNot(EVT VT) const override;
protected:
std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const override;
private:
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when generating code for different targets.
const ARMSubtarget *Subtarget;
const TargetRegisterInfo *RegInfo;
const InstrItineraryData *Itins;
/// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
unsigned ARMPCLabelIndex;
// TODO: remove this, and have shouldInsertFencesForAtomic do the proper
// check.
bool InsertFencesForAtomic;
bool HasStandaloneRem = true;
void addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT);
void addDRTypeForNEON(MVT VT);
void addQRTypeForNEON(MVT VT);
std::pair<SDValue, SDValue> getARMXALUOOp(SDValue Op, SelectionDAG &DAG, SDValue &ARMcc) const;
using RegsToPassVector = SmallVector<std::pair<unsigned, SDValue>, 8>;
void PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG, SDValue Chain,
SDValue &Arg, RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVectorImpl<SDValue> &MemOpChains,
ISD::ArgFlagsTy Flags) const;
SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG,
const SDLoc &dl) const;
CallingConv::ID getEffectiveCallingConv(CallingConv::ID CC,
bool isVarArg) const;
CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return,
bool isVarArg) const;
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
const SDLoc &dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const;
SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressWindows(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
TLSModel::Model model) const;
SDValue LowerGlobalTLSAddressDarwin(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddressWindows(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUnsignedALUO(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantFP(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDivRem(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed) const;
void ExpandDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed,
SmallVectorImpl<SDValue> &Results) const;
SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const;
SDValue LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, bool Signed,
SDValue &Chain) const;
SDValue LowerREM(SDNode *N, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFSETCC(SDValue Op, SelectionDAG &DAG) const;
void lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
void LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
Register getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const override;
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const override;
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const override;
SDValue MoveToHPR(const SDLoc &dl, SelectionDAG &DAG, MVT LocVT, MVT ValVT,
SDValue Val) const;
SDValue MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG, MVT LocVT,
MVT ValVT, SDValue Val) const;
SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal) const;
bool supportSplitCSR(MachineFunction *MF) const override {
return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
}
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
bool
splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
SDValue *Parts, unsigned NumParts, MVT PartVT,
Optional<CallingConv::ID> CC) const override;
SDValue
joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT,
Optional<CallingConv::ID> CC) const override;
SDValue
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
int StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl,
SDValue &Chain, const Value *OrigArg,
unsigned InRegsParamRecordIdx, int ArgOffset,
unsigned ArgSize) const;
void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
unsigned ArgOffset, unsigned TotalArgRegsSaveSize,
bool ForceMutable = false) const;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
/// HandleByVal - Target-specific cleanup for ByVal support.
void HandleByVal(CCState *, unsigned &, Align) const override;
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool IsEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
bool isCalleeStructRet, bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
const bool isIndirect) const;
bool CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const override;
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
bool shouldConsiderGEPOffsetSplit() const override { return true; }
bool isUnsupportedFloatingType(EVT VT) const;
SDValue getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal, SDValue TrueVal,
SDValue ARMcc, SDValue CCR, SDValue Cmp,
SelectionDAG &DAG) const;
SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMcc, SelectionDAG &DAG, const SDLoc &dl) const;
SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl, bool Signaling = false) const;
SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const;
SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const;
void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB, int FI) const;
void EmitSjLjDispatchBlock(MachineInstr &MI, MachineBasicBlock *MBB) const;
bool RemapAddSubWithFlags(MachineInstr &MI, MachineBasicBlock *BB) const;
MachineBasicBlock *EmitStructByval(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitLowered__chkstk(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitLowered__dbzchk(MachineInstr &MI,
MachineBasicBlock *MBB) const;
void addMVEVectorTypes(bool HasMVEFP);
void addAllExtLoads(const MVT From, const MVT To, LegalizeAction Action);
void setAllExpand(MVT VT);
};
enum VMOVModImmType {
VMOVModImm,
VMVNModImm,
MVEVMVNModImm,
OtherModImm
};
namespace ARM {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
} // end namespace ARM
} // end namespace llvm
#endif // LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H