llvm-for-llvmta/lib/Target/AMDGPU/SIInsertHardClauses.cpp

205 lines
7.1 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- SIInsertHardClauses.cpp - Insert Hard Clauses ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert s_clause instructions to form hard clauses.
///
/// Clausing load instructions can give cache coherency benefits. Before gfx10,
/// the hardware automatically detected "soft clauses", which were sequences of
/// memory instructions of the same type. In gfx10 this detection was removed,
/// and the s_clause instruction was introduced to explicitly mark "hard
/// clauses".
///
/// It's the scheduler's job to form the clauses by putting similar memory
/// instructions next to each other. Our job is just to insert an s_clause
/// instruction to mark the start of each clause.
///
/// Note that hard clauses are very similar to, but logically distinct from, the
/// groups of instructions that have to be restartable when XNACK is enabled.
/// The rules are slightly different in each case. For example an s_nop
/// instruction breaks a restartable group, but can appear in the middle of a
/// hard clause. (Before gfx10 there wasn't a distinction, and both were called
/// "soft clauses" or just "clauses".)
///
/// The SIFormMemoryClauses pass and GCNHazardRecognizer deal with restartable
/// groups, not hard clauses.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
#define DEBUG_TYPE "si-insert-hard-clauses"
namespace {
enum HardClauseType {
// Texture, buffer, global or scratch memory instructions.
HARDCLAUSE_VMEM,
// Flat (not global or scratch) memory instructions.
HARDCLAUSE_FLAT,
// Instructions that access LDS.
HARDCLAUSE_LDS,
// Scalar memory instructions.
HARDCLAUSE_SMEM,
// VALU instructions.
HARDCLAUSE_VALU,
LAST_REAL_HARDCLAUSE_TYPE = HARDCLAUSE_VALU,
// Internal instructions, which are allowed in the middle of a hard clause,
// except for s_waitcnt.
HARDCLAUSE_INTERNAL,
// Instructions that are not allowed in a hard clause: SALU, export, branch,
// message, GDS, s_waitcnt and anything else not mentioned above.
HARDCLAUSE_ILLEGAL,
};
HardClauseType getHardClauseType(const MachineInstr &MI) {
// On current architectures we only get a benefit from clausing loads.
if (MI.mayLoad()) {
if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
return HARDCLAUSE_VMEM;
if (SIInstrInfo::isFLAT(MI))
return HARDCLAUSE_FLAT;
// TODO: LDS
if (SIInstrInfo::isSMRD(MI))
return HARDCLAUSE_SMEM;
}
// Don't form VALU clauses. It's not clear what benefit they give, if any.
// In practice s_nop is the only internal instruction we're likely to see.
// It's safe to treat the rest as illegal.
if (MI.getOpcode() == AMDGPU::S_NOP)
return HARDCLAUSE_INTERNAL;
return HARDCLAUSE_ILLEGAL;
}
class SIInsertHardClauses : public MachineFunctionPass {
public:
static char ID;
SIInsertHardClauses() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
// Track information about a clause as we discover it.
struct ClauseInfo {
// The type of all (non-internal) instructions in the clause.
HardClauseType Type = HARDCLAUSE_ILLEGAL;
// The first (necessarily non-internal) instruction in the clause.
MachineInstr *First = nullptr;
// The last non-internal instruction in the clause.
MachineInstr *Last = nullptr;
// The length of the clause including any internal instructions in the
// middle or after the end of the clause.
unsigned Length = 0;
// The base operands of *Last.
SmallVector<const MachineOperand *, 4> BaseOps;
};
bool emitClause(const ClauseInfo &CI, const SIInstrInfo *SII) {
// Get the size of the clause excluding any internal instructions at the
// end.
unsigned Size =
std::distance(CI.First->getIterator(), CI.Last->getIterator()) + 1;
if (Size < 2)
return false;
assert(Size <= 64 && "Hard clause is too long!");
auto &MBB = *CI.First->getParent();
auto ClauseMI =
BuildMI(MBB, *CI.First, DebugLoc(), SII->get(AMDGPU::S_CLAUSE))
.addImm(Size - 1);
finalizeBundle(MBB, ClauseMI->getIterator(),
std::next(CI.Last->getIterator()));
return true;
}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (!ST.hasHardClauses())
return false;
const SIInstrInfo *SII = ST.getInstrInfo();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
bool Changed = false;
for (auto &MBB : MF) {
ClauseInfo CI;
for (auto &MI : MBB) {
HardClauseType Type = getHardClauseType(MI);
int64_t Dummy1;
bool Dummy2;
unsigned Dummy3;
SmallVector<const MachineOperand *, 4> BaseOps;
if (Type <= LAST_REAL_HARDCLAUSE_TYPE) {
if (!SII->getMemOperandsWithOffsetWidth(MI, BaseOps, Dummy1, Dummy2,
Dummy3, TRI)) {
// We failed to get the base operands, so we'll never clause this
// instruction with any other, so pretend it's illegal.
Type = HARDCLAUSE_ILLEGAL;
}
}
if (CI.Length == 64 ||
(CI.Length && Type != HARDCLAUSE_INTERNAL &&
(Type != CI.Type ||
// Note that we lie to shouldClusterMemOps about the size of the
// cluster. When shouldClusterMemOps is called from the machine
// scheduler it limits the size of the cluster to avoid increasing
// register pressure too much, but this pass runs after register
// allocation so there is no need for that kind of limit.
!SII->shouldClusterMemOps(CI.BaseOps, BaseOps, 2, 2)))) {
// Finish the current clause.
Changed |= emitClause(CI, SII);
CI = ClauseInfo();
}
if (CI.Length) {
// Extend the current clause.
++CI.Length;
if (Type != HARDCLAUSE_INTERNAL) {
CI.Last = &MI;
CI.BaseOps = std::move(BaseOps);
}
} else if (Type <= LAST_REAL_HARDCLAUSE_TYPE) {
// Start a new clause.
CI = ClauseInfo{Type, &MI, &MI, 1, std::move(BaseOps)};
}
}
// Finish the last clause in the basic block if any.
if (CI.Length)
Changed |= emitClause(CI, SII);
}
return Changed;
}
};
} // namespace
char SIInsertHardClauses::ID = 0;
char &llvm::SIInsertHardClausesID = SIInsertHardClauses::ID;
INITIALIZE_PASS(SIInsertHardClauses, DEBUG_TYPE, "SI Insert Hard Clauses",
false, false)