403 lines
16 KiB
C++
403 lines
16 KiB
C++
|
//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
|
||
|
// there is at most one ret and one unreachable instruction, it ensures there is
|
||
|
// at most one divergent exiting block.
|
||
|
//
|
||
|
// StructurizeCFG can't deal with multi-exit regions formed by branches to
|
||
|
// multiple return nodes. It is not desirable to structurize regions with
|
||
|
// uniform branches, so unifying those to the same return block as divergent
|
||
|
// branches inhibits use of scalar branching. It still can't deal with the case
|
||
|
// where one branch goes to return, and one unreachable. Replace unreachable in
|
||
|
// this case with a return.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "AMDGPU.h"
|
||
|
#include "SIDefines.h"
|
||
|
#include "llvm/ADT/ArrayRef.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/StringRef.h"
|
||
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
||
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
||
|
#include "llvm/Analysis/PostDominators.h"
|
||
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/CFG.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/InstrTypes.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/Intrinsics.h"
|
||
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
||
|
#include "llvm/IR/Type.h"
|
||
|
#include "llvm/InitializePasses.h"
|
||
|
#include "llvm/Pass.h"
|
||
|
#include "llvm/Support/Casting.h"
|
||
|
#include "llvm/Transforms/Scalar.h"
|
||
|
#include "llvm/Transforms/Utils.h"
|
||
|
#include "llvm/Transforms/Utils/Local.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
|
||
|
public:
|
||
|
static char ID; // Pass identification, replacement for typeid
|
||
|
|
||
|
AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
|
||
|
initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
|
||
|
}
|
||
|
|
||
|
// We can preserve non-critical-edgeness when we unify function exit nodes
|
||
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
bool runOnFunction(Function &F) override;
|
||
|
};
|
||
|
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
char AMDGPUUnifyDivergentExitNodes::ID = 0;
|
||
|
|
||
|
char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
|
||
|
|
||
|
INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
|
||
|
"Unify divergent function exit nodes", false, false)
|
||
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
||
|
INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
|
||
|
"Unify divergent function exit nodes", false, false)
|
||
|
|
||
|
void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
|
||
|
if (RequireAndPreserveDomTree)
|
||
|
AU.addRequired<DominatorTreeWrapperPass>();
|
||
|
|
||
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
||
|
|
||
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
||
|
|
||
|
if (RequireAndPreserveDomTree) {
|
||
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
||
|
// FIXME: preserve PostDominatorTreeWrapperPass
|
||
|
}
|
||
|
|
||
|
// No divergent values are changed, only blocks and branch edges.
|
||
|
AU.addPreserved<LegacyDivergenceAnalysis>();
|
||
|
|
||
|
// We preserve the non-critical-edgeness property
|
||
|
AU.addPreservedID(BreakCriticalEdgesID);
|
||
|
|
||
|
// This is a cluster of orthogonal Transforms
|
||
|
AU.addPreservedID(LowerSwitchID);
|
||
|
FunctionPass::getAnalysisUsage(AU);
|
||
|
|
||
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||
|
}
|
||
|
|
||
|
/// \returns true if \p BB is reachable through only uniform branches.
|
||
|
/// XXX - Is there a more efficient way to find this?
|
||
|
static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA,
|
||
|
BasicBlock &BB) {
|
||
|
SmallVector<BasicBlock *, 8> Stack;
|
||
|
SmallPtrSet<BasicBlock *, 8> Visited;
|
||
|
|
||
|
for (BasicBlock *Pred : predecessors(&BB))
|
||
|
Stack.push_back(Pred);
|
||
|
|
||
|
while (!Stack.empty()) {
|
||
|
BasicBlock *Top = Stack.pop_back_val();
|
||
|
if (!DA.isUniform(Top->getTerminator()))
|
||
|
return false;
|
||
|
|
||
|
for (BasicBlock *Pred : predecessors(Top)) {
|
||
|
if (Visited.insert(Pred).second)
|
||
|
Stack.push_back(Pred);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void removeDoneExport(Function &F) {
|
||
|
ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext());
|
||
|
for (BasicBlock &BB : F) {
|
||
|
for (Instruction &I : BB) {
|
||
|
if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) {
|
||
|
if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) {
|
||
|
Intrin->setArgOperand(6, BoolFalse); // done
|
||
|
} else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) {
|
||
|
Intrin->setArgOperand(4, BoolFalse); // done
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU,
|
||
|
ArrayRef<BasicBlock *> ReturningBlocks,
|
||
|
bool InsertExport,
|
||
|
const TargetTransformInfo &TTI,
|
||
|
StringRef Name) {
|
||
|
// Otherwise, we need to insert a new basic block into the function, add a PHI
|
||
|
// nodes (if the function returns values), and convert all of the return
|
||
|
// instructions into unconditional branches.
|
||
|
BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
|
||
|
IRBuilder<> B(NewRetBlock);
|
||
|
|
||
|
if (InsertExport) {
|
||
|
// Ensure that there's only one "done" export in the shader by removing the
|
||
|
// "done" bit set on the original final export. More than one "done" export
|
||
|
// can lead to undefined behavior.
|
||
|
removeDoneExport(F);
|
||
|
|
||
|
Value *Undef = UndefValue::get(B.getFloatTy());
|
||
|
B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() },
|
||
|
{
|
||
|
B.getInt32(AMDGPU::Exp::ET_NULL),
|
||
|
B.getInt32(0), // enabled channels
|
||
|
Undef, Undef, Undef, Undef, // values
|
||
|
B.getTrue(), // done
|
||
|
B.getTrue(), // valid mask
|
||
|
});
|
||
|
}
|
||
|
|
||
|
PHINode *PN = nullptr;
|
||
|
if (F.getReturnType()->isVoidTy()) {
|
||
|
B.CreateRetVoid();
|
||
|
} else {
|
||
|
// If the function doesn't return void... add a PHI node to the block...
|
||
|
PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(),
|
||
|
"UnifiedRetVal");
|
||
|
assert(!InsertExport);
|
||
|
B.CreateRet(PN);
|
||
|
}
|
||
|
|
||
|
// Loop over all of the blocks, replacing the return instruction with an
|
||
|
// unconditional branch.
|
||
|
std::vector<DominatorTree::UpdateType> Updates;
|
||
|
Updates.reserve(ReturningBlocks.size());
|
||
|
for (BasicBlock *BB : ReturningBlocks) {
|
||
|
// Add an incoming element to the PHI node for every return instruction that
|
||
|
// is merging into this new block...
|
||
|
if (PN)
|
||
|
PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
|
||
|
|
||
|
// Remove and delete the return inst.
|
||
|
BB->getTerminator()->eraseFromParent();
|
||
|
BranchInst::Create(NewRetBlock, BB);
|
||
|
Updates.push_back({DominatorTree::Insert, BB, NewRetBlock});
|
||
|
}
|
||
|
|
||
|
if (RequireAndPreserveDomTree)
|
||
|
DTU.applyUpdates(Updates);
|
||
|
Updates.clear();
|
||
|
|
||
|
for (BasicBlock *BB : ReturningBlocks) {
|
||
|
// Cleanup possible branch to unconditional branch to the return.
|
||
|
simplifyCFG(BB, TTI, RequireAndPreserveDomTree ? &DTU : nullptr,
|
||
|
SimplifyCFGOptions().bonusInstThreshold(2));
|
||
|
}
|
||
|
|
||
|
return NewRetBlock;
|
||
|
}
|
||
|
|
||
|
bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
|
||
|
DominatorTree *DT = nullptr;
|
||
|
if (RequireAndPreserveDomTree)
|
||
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||
|
|
||
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
||
|
|
||
|
// If there's only one exit, we don't need to do anything, unless this is a
|
||
|
// pixel shader and that exit is an infinite loop, since we still have to
|
||
|
// insert an export in that case.
|
||
|
if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS)
|
||
|
return false;
|
||
|
|
||
|
LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>();
|
||
|
|
||
|
// Loop over all of the blocks in a function, tracking all of the blocks that
|
||
|
// return.
|
||
|
SmallVector<BasicBlock *, 4> ReturningBlocks;
|
||
|
SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks;
|
||
|
SmallVector<BasicBlock *, 4> UnreachableBlocks;
|
||
|
|
||
|
// Dummy return block for infinite loop.
|
||
|
BasicBlock *DummyReturnBB = nullptr;
|
||
|
|
||
|
bool InsertExport = false;
|
||
|
|
||
|
bool Changed = false;
|
||
|
std::vector<DominatorTree::UpdateType> Updates;
|
||
|
|
||
|
for (BasicBlock *BB : PDT.roots()) {
|
||
|
if (isa<ReturnInst>(BB->getTerminator())) {
|
||
|
if (!isUniformlyReached(DA, *BB))
|
||
|
ReturningBlocks.push_back(BB);
|
||
|
else
|
||
|
UniformlyReachedRetBlocks.push_back(BB);
|
||
|
} else if (isa<UnreachableInst>(BB->getTerminator())) {
|
||
|
if (!isUniformlyReached(DA, *BB))
|
||
|
UnreachableBlocks.push_back(BB);
|
||
|
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
|
||
|
|
||
|
ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
|
||
|
if (DummyReturnBB == nullptr) {
|
||
|
DummyReturnBB = BasicBlock::Create(F.getContext(),
|
||
|
"DummyReturnBlock", &F);
|
||
|
Type *RetTy = F.getReturnType();
|
||
|
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
|
||
|
|
||
|
// For pixel shaders, the producer guarantees that an export is
|
||
|
// executed before each return instruction. However, if there is an
|
||
|
// infinite loop and we insert a return ourselves, we need to uphold
|
||
|
// that guarantee by inserting a null export. This can happen e.g. in
|
||
|
// an infinite loop with kill instructions, which is supposed to
|
||
|
// terminate. However, we don't need to do this if there is a non-void
|
||
|
// return value, since then there is an epilog afterwards which will
|
||
|
// still export.
|
||
|
//
|
||
|
// Note: In the case where only some threads enter the infinite loop,
|
||
|
// this can result in the null export happening redundantly after the
|
||
|
// original exports. However, The last "real" export happens after all
|
||
|
// the threads that didn't enter an infinite loop converged, which
|
||
|
// means that the only extra threads to execute the null export are
|
||
|
// threads that entered the infinite loop, and they only could've
|
||
|
// exited through being killed which sets their exec bit to 0.
|
||
|
// Therefore, unless there's an actual infinite loop, which can have
|
||
|
// invalid results, or there's a kill after the last export, which we
|
||
|
// assume the frontend won't do, this export will have the same exec
|
||
|
// mask as the last "real" export, and therefore the valid mask will be
|
||
|
// overwritten with the same value and will still be correct. Also,
|
||
|
// even though this forces an extra unnecessary export wait, we assume
|
||
|
// that this happens rare enough in practice to that we don't have to
|
||
|
// worry about performance.
|
||
|
if (F.getCallingConv() == CallingConv::AMDGPU_PS &&
|
||
|
RetTy->isVoidTy()) {
|
||
|
InsertExport = true;
|
||
|
}
|
||
|
|
||
|
ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
|
||
|
ReturningBlocks.push_back(DummyReturnBB);
|
||
|
}
|
||
|
|
||
|
if (BI->isUnconditional()) {
|
||
|
BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
|
||
|
BI->eraseFromParent(); // Delete the unconditional branch.
|
||
|
// Add a new conditional branch with a dummy edge to the return block.
|
||
|
BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
|
||
|
Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB});
|
||
|
} else { // Conditional branch.
|
||
|
SmallVector<BasicBlock *, 2> Successors(succ_begin(BB), succ_end(BB));
|
||
|
|
||
|
// Create a new transition block to hold the conditional branch.
|
||
|
BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
|
||
|
|
||
|
Updates.reserve(Updates.size() + 2 * Successors.size() + 2);
|
||
|
|
||
|
// 'Successors' become successors of TransitionBB instead of BB,
|
||
|
// and TransitionBB becomes a single successor of BB.
|
||
|
Updates.push_back({DominatorTree::Insert, BB, TransitionBB});
|
||
|
for (BasicBlock *Successor : Successors) {
|
||
|
Updates.push_back({DominatorTree::Insert, TransitionBB, Successor});
|
||
|
Updates.push_back({DominatorTree::Delete, BB, Successor});
|
||
|
}
|
||
|
|
||
|
// Create a branch that will always branch to the transition block and
|
||
|
// references DummyReturnBB.
|
||
|
BB->getTerminator()->eraseFromParent();
|
||
|
BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
|
||
|
Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB});
|
||
|
}
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!UnreachableBlocks.empty()) {
|
||
|
BasicBlock *UnreachableBlock = nullptr;
|
||
|
|
||
|
if (UnreachableBlocks.size() == 1) {
|
||
|
UnreachableBlock = UnreachableBlocks.front();
|
||
|
} else {
|
||
|
UnreachableBlock = BasicBlock::Create(F.getContext(),
|
||
|
"UnifiedUnreachableBlock", &F);
|
||
|
new UnreachableInst(F.getContext(), UnreachableBlock);
|
||
|
|
||
|
Updates.reserve(Updates.size() + UnreachableBlocks.size());
|
||
|
for (BasicBlock *BB : UnreachableBlocks) {
|
||
|
// Remove and delete the unreachable inst.
|
||
|
BB->getTerminator()->eraseFromParent();
|
||
|
BranchInst::Create(UnreachableBlock, BB);
|
||
|
Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock});
|
||
|
}
|
||
|
Changed = true;
|
||
|
}
|
||
|
|
||
|
if (!ReturningBlocks.empty()) {
|
||
|
// Don't create a new unreachable inst if we have a return. The
|
||
|
// structurizer/annotator can't handle the multiple exits
|
||
|
|
||
|
Type *RetTy = F.getReturnType();
|
||
|
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
|
||
|
// Remove and delete the unreachable inst.
|
||
|
UnreachableBlock->getTerminator()->eraseFromParent();
|
||
|
|
||
|
Function *UnreachableIntrin =
|
||
|
Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
|
||
|
|
||
|
// Insert a call to an intrinsic tracking that this is an unreachable
|
||
|
// point, in case we want to kill the active lanes or something later.
|
||
|
CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
|
||
|
|
||
|
// Don't create a scalar trap. We would only want to trap if this code was
|
||
|
// really reached, but a scalar trap would happen even if no lanes
|
||
|
// actually reached here.
|
||
|
ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
|
||
|
ReturningBlocks.push_back(UnreachableBlock);
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FIXME: add PDT here once simplifycfg is ready.
|
||
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
||
|
if (RequireAndPreserveDomTree)
|
||
|
DTU.applyUpdates(Updates);
|
||
|
Updates.clear();
|
||
|
|
||
|
// Now handle return blocks.
|
||
|
if (ReturningBlocks.empty())
|
||
|
return Changed; // No blocks return
|
||
|
|
||
|
if (ReturningBlocks.size() == 1 && !InsertExport)
|
||
|
return Changed; // Already has a single return block
|
||
|
|
||
|
const TargetTransformInfo &TTI
|
||
|
= getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||
|
|
||
|
// Unify returning blocks. If we are going to insert the export it is also
|
||
|
// necessary to include blocks that are uniformly reached, because in addition
|
||
|
// to inserting the export the "done" bits on existing exports will be cleared
|
||
|
// and we do not want to end up with the normal export in a non-unified,
|
||
|
// uniformly reached block with the "done" bit cleared.
|
||
|
auto BlocksToUnify = std::move(ReturningBlocks);
|
||
|
if (InsertExport) {
|
||
|
llvm::append_range(BlocksToUnify, UniformlyReachedRetBlocks);
|
||
|
}
|
||
|
|
||
|
unifyReturnBlockSet(F, DTU, BlocksToUnify, InsertExport, TTI,
|
||
|
"UnifiedReturnBlock");
|
||
|
return true;
|
||
|
}
|