610 lines
22 KiB
C++
610 lines
22 KiB
C++
|
//=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// \file
|
||
|
//
|
||
|
// The pass bind printfs to a kernel arg pointer that will be bound to a buffer
|
||
|
// later by the runtime.
|
||
|
//
|
||
|
// This pass traverses the functions in the module and converts
|
||
|
// each call to printf to a sequence of operations that
|
||
|
// store the following into the printf buffer:
|
||
|
// - format string (passed as a module's metadata unique ID)
|
||
|
// - bitwise copies of printf arguments
|
||
|
// The backend passes will need to store metadata in the kernel
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "AMDGPU.h"
|
||
|
#include "llvm/Analysis/InstructionSimplify.h"
|
||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/InitializePasses.h"
|
||
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "printfToRuntime"
|
||
|
#define DWORD_ALIGN 4
|
||
|
|
||
|
namespace {
|
||
|
class AMDGPUPrintfRuntimeBinding final : public ModulePass {
|
||
|
|
||
|
public:
|
||
|
static char ID;
|
||
|
|
||
|
explicit AMDGPUPrintfRuntimeBinding();
|
||
|
|
||
|
private:
|
||
|
bool runOnModule(Module &M) override;
|
||
|
|
||
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||
|
AU.addRequired<DominatorTreeWrapperPass>();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class AMDGPUPrintfRuntimeBindingImpl {
|
||
|
public:
|
||
|
AMDGPUPrintfRuntimeBindingImpl(
|
||
|
function_ref<const DominatorTree &(Function &)> GetDT,
|
||
|
function_ref<const TargetLibraryInfo &(Function &)> GetTLI)
|
||
|
: GetDT(GetDT), GetTLI(GetTLI) {}
|
||
|
bool run(Module &M);
|
||
|
|
||
|
private:
|
||
|
void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
|
||
|
StringRef fmt, size_t num_ops) const;
|
||
|
|
||
|
bool shouldPrintAsStr(char Specifier, Type *OpType) const;
|
||
|
bool lowerPrintfForGpu(Module &M);
|
||
|
|
||
|
Value *simplify(Instruction *I, const TargetLibraryInfo *TLI,
|
||
|
const DominatorTree *DT) {
|
||
|
return SimplifyInstruction(I, {*TD, TLI, DT});
|
||
|
}
|
||
|
|
||
|
const DataLayout *TD;
|
||
|
function_ref<const DominatorTree &(Function &)> GetDT;
|
||
|
function_ref<const TargetLibraryInfo &(Function &)> GetTLI;
|
||
|
SmallVector<CallInst *, 32> Printfs;
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
char AMDGPUPrintfRuntimeBinding::ID = 0;
|
||
|
|
||
|
INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
|
||
|
"amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
|
||
|
false, false)
|
||
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||
|
INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
|
||
|
"AMDGPU Printf lowering", false, false)
|
||
|
|
||
|
char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
|
||
|
|
||
|
namespace llvm {
|
||
|
ModulePass *createAMDGPUPrintfRuntimeBinding() {
|
||
|
return new AMDGPUPrintfRuntimeBinding();
|
||
|
}
|
||
|
} // namespace llvm
|
||
|
|
||
|
AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding() : ModulePass(ID) {
|
||
|
initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
|
||
|
}
|
||
|
|
||
|
void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers(
|
||
|
SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
|
||
|
size_t NumOps) const {
|
||
|
// not all format characters are collected.
|
||
|
// At this time the format characters of interest
|
||
|
// are %p and %s, which use to know if we
|
||
|
// are either storing a literal string or a
|
||
|
// pointer to the printf buffer.
|
||
|
static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
|
||
|
size_t CurFmtSpecifierIdx = 0;
|
||
|
size_t PrevFmtSpecifierIdx = 0;
|
||
|
|
||
|
while ((CurFmtSpecifierIdx = Fmt.find_first_of(
|
||
|
ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
|
||
|
bool ArgDump = false;
|
||
|
StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
|
||
|
CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
|
||
|
size_t pTag = CurFmt.find_last_of("%");
|
||
|
if (pTag != StringRef::npos) {
|
||
|
ArgDump = true;
|
||
|
while (pTag && CurFmt[--pTag] == '%') {
|
||
|
ArgDump = !ArgDump;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ArgDump)
|
||
|
OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
|
||
|
|
||
|
PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool AMDGPUPrintfRuntimeBindingImpl::shouldPrintAsStr(char Specifier,
|
||
|
Type *OpType) const {
|
||
|
if (Specifier != 's')
|
||
|
return false;
|
||
|
const PointerType *PT = dyn_cast<PointerType>(OpType);
|
||
|
if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
|
||
|
return false;
|
||
|
Type *ElemType = PT->getContainedType(0);
|
||
|
if (ElemType->getTypeID() != Type::IntegerTyID)
|
||
|
return false;
|
||
|
IntegerType *ElemIType = cast<IntegerType>(ElemType);
|
||
|
return ElemIType->getBitWidth() == 8;
|
||
|
}
|
||
|
|
||
|
bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) {
|
||
|
LLVMContext &Ctx = M.getContext();
|
||
|
IRBuilder<> Builder(Ctx);
|
||
|
Type *I32Ty = Type::getInt32Ty(Ctx);
|
||
|
unsigned UniqID = 0;
|
||
|
// NB: This is important for this string size to be divizable by 4
|
||
|
const char NonLiteralStr[4] = "???";
|
||
|
|
||
|
for (auto CI : Printfs) {
|
||
|
unsigned NumOps = CI->getNumArgOperands();
|
||
|
|
||
|
SmallString<16> OpConvSpecifiers;
|
||
|
Value *Op = CI->getArgOperand(0);
|
||
|
|
||
|
if (auto LI = dyn_cast<LoadInst>(Op)) {
|
||
|
Op = LI->getPointerOperand();
|
||
|
for (auto Use : Op->users()) {
|
||
|
if (auto SI = dyn_cast<StoreInst>(Use)) {
|
||
|
Op = SI->getValueOperand();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (auto I = dyn_cast<Instruction>(Op)) {
|
||
|
Value *Op_simplified =
|
||
|
simplify(I, &GetTLI(*I->getFunction()), &GetDT(*I->getFunction()));
|
||
|
if (Op_simplified)
|
||
|
Op = Op_simplified;
|
||
|
}
|
||
|
|
||
|
ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
|
||
|
|
||
|
if (ConstExpr) {
|
||
|
GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
|
||
|
|
||
|
StringRef Str("unknown");
|
||
|
if (GVar && GVar->hasInitializer()) {
|
||
|
auto *Init = GVar->getInitializer();
|
||
|
if (auto *CA = dyn_cast<ConstantDataArray>(Init)) {
|
||
|
if (CA->isString())
|
||
|
Str = CA->getAsCString();
|
||
|
} else if (isa<ConstantAggregateZero>(Init)) {
|
||
|
Str = "";
|
||
|
}
|
||
|
//
|
||
|
// we need this call to ascertain
|
||
|
// that we are printing a string
|
||
|
// or a pointer. It takes out the
|
||
|
// specifiers and fills up the first
|
||
|
// arg
|
||
|
getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
|
||
|
}
|
||
|
// Add metadata for the string
|
||
|
std::string AStreamHolder;
|
||
|
raw_string_ostream Sizes(AStreamHolder);
|
||
|
int Sum = DWORD_ALIGN;
|
||
|
Sizes << CI->getNumArgOperands() - 1;
|
||
|
Sizes << ':';
|
||
|
for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
|
||
|
ArgCount <= OpConvSpecifiers.size();
|
||
|
ArgCount++) {
|
||
|
Value *Arg = CI->getArgOperand(ArgCount);
|
||
|
Type *ArgType = Arg->getType();
|
||
|
unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
|
||
|
ArgSize = ArgSize / 8;
|
||
|
//
|
||
|
// ArgSize by design should be a multiple of DWORD_ALIGN,
|
||
|
// expand the arguments that do not follow this rule.
|
||
|
//
|
||
|
if (ArgSize % DWORD_ALIGN != 0) {
|
||
|
llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
|
||
|
auto *LLVMVecType = llvm::dyn_cast<llvm::FixedVectorType>(ArgType);
|
||
|
int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
|
||
|
if (LLVMVecType && NumElem > 1)
|
||
|
ResType = llvm::FixedVectorType::get(ResType, NumElem);
|
||
|
Builder.SetInsertPoint(CI);
|
||
|
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
|
||
|
if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
|
||
|
OpConvSpecifiers[ArgCount - 1] == 'X' ||
|
||
|
OpConvSpecifiers[ArgCount - 1] == 'u' ||
|
||
|
OpConvSpecifiers[ArgCount - 1] == 'o')
|
||
|
Arg = Builder.CreateZExt(Arg, ResType);
|
||
|
else
|
||
|
Arg = Builder.CreateSExt(Arg, ResType);
|
||
|
ArgType = Arg->getType();
|
||
|
ArgSize = TD->getTypeAllocSizeInBits(ArgType);
|
||
|
ArgSize = ArgSize / 8;
|
||
|
CI->setOperand(ArgCount, Arg);
|
||
|
}
|
||
|
if (OpConvSpecifiers[ArgCount - 1] == 'f') {
|
||
|
ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
|
||
|
if (FpCons)
|
||
|
ArgSize = 4;
|
||
|
else {
|
||
|
FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
|
||
|
if (FpExt && FpExt->getType()->isDoubleTy() &&
|
||
|
FpExt->getOperand(0)->getType()->isFloatTy())
|
||
|
ArgSize = 4;
|
||
|
}
|
||
|
}
|
||
|
if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
|
||
|
if (auto *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
|
||
|
auto *GV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
|
||
|
if (GV && GV->hasInitializer()) {
|
||
|
Constant *Init = GV->getInitializer();
|
||
|
bool IsZeroValue = Init->isZeroValue();
|
||
|
auto *CA = dyn_cast<ConstantDataArray>(Init);
|
||
|
if (IsZeroValue || (CA && CA->isString())) {
|
||
|
size_t SizeStr =
|
||
|
IsZeroValue ? 1 : (strlen(CA->getAsCString().data()) + 1);
|
||
|
size_t Rem = SizeStr % DWORD_ALIGN;
|
||
|
size_t NSizeStr = 0;
|
||
|
LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
|
||
|
<< '\n');
|
||
|
if (Rem) {
|
||
|
NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
|
||
|
} else {
|
||
|
NSizeStr = SizeStr;
|
||
|
}
|
||
|
ArgSize = NSizeStr;
|
||
|
}
|
||
|
} else {
|
||
|
ArgSize = sizeof(NonLiteralStr);
|
||
|
}
|
||
|
} else {
|
||
|
ArgSize = sizeof(NonLiteralStr);
|
||
|
}
|
||
|
}
|
||
|
LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
|
||
|
<< " for type: " << *ArgType << '\n');
|
||
|
Sizes << ArgSize << ':';
|
||
|
Sum += ArgSize;
|
||
|
}
|
||
|
LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
|
||
|
<< '\n');
|
||
|
for (size_t I = 0; I < Str.size(); ++I) {
|
||
|
// Rest of the C escape sequences (e.g. \') are handled correctly
|
||
|
// by the MDParser
|
||
|
switch (Str[I]) {
|
||
|
case '\a':
|
||
|
Sizes << "\\a";
|
||
|
break;
|
||
|
case '\b':
|
||
|
Sizes << "\\b";
|
||
|
break;
|
||
|
case '\f':
|
||
|
Sizes << "\\f";
|
||
|
break;
|
||
|
case '\n':
|
||
|
Sizes << "\\n";
|
||
|
break;
|
||
|
case '\r':
|
||
|
Sizes << "\\r";
|
||
|
break;
|
||
|
case '\v':
|
||
|
Sizes << "\\v";
|
||
|
break;
|
||
|
case ':':
|
||
|
// ':' cannot be scanned by Flex, as it is defined as a delimiter
|
||
|
// Replace it with it's octal representation \72
|
||
|
Sizes << "\\72";
|
||
|
break;
|
||
|
default:
|
||
|
Sizes << Str[I];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Insert the printf_alloc call
|
||
|
Builder.SetInsertPoint(CI);
|
||
|
Builder.SetCurrentDebugLocation(CI->getDebugLoc());
|
||
|
|
||
|
AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
|
||
|
Attribute::NoUnwind);
|
||
|
|
||
|
Type *SizetTy = Type::getInt32Ty(Ctx);
|
||
|
|
||
|
Type *Tys_alloc[1] = {SizetTy};
|
||
|
Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
|
||
|
FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
|
||
|
FunctionCallee PrintfAllocFn =
|
||
|
M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
|
||
|
std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
|
||
|
MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
|
||
|
|
||
|
// Instead of creating global variables, the
|
||
|
// printf format strings are extracted
|
||
|
// and passed as metadata. This avoids
|
||
|
// polluting llvm's symbol tables in this module.
|
||
|
// Metadata is going to be extracted
|
||
|
// by the backend passes and inserted
|
||
|
// into the OpenCL binary as appropriate.
|
||
|
StringRef amd("llvm.printf.fmts");
|
||
|
NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
|
||
|
MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
|
||
|
metaD->addOperand(myMD);
|
||
|
Value *sumC = ConstantInt::get(SizetTy, Sum, false);
|
||
|
SmallVector<Value *, 1> alloc_args;
|
||
|
alloc_args.push_back(sumC);
|
||
|
CallInst *pcall =
|
||
|
CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
|
||
|
|
||
|
//
|
||
|
// Insert code to split basicblock with a
|
||
|
// piece of hammock code.
|
||
|
// basicblock splits after buffer overflow check
|
||
|
//
|
||
|
ConstantPointerNull *zeroIntPtr =
|
||
|
ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
|
||
|
ICmpInst *cmp =
|
||
|
dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
|
||
|
if (!CI->use_empty()) {
|
||
|
Value *result =
|
||
|
Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
|
||
|
CI->replaceAllUsesWith(result);
|
||
|
}
|
||
|
SplitBlock(CI->getParent(), cmp);
|
||
|
Instruction *Brnch =
|
||
|
SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
|
||
|
|
||
|
Builder.SetInsertPoint(Brnch);
|
||
|
|
||
|
// store unique printf id in the buffer
|
||
|
//
|
||
|
SmallVector<Value *, 1> ZeroIdxList;
|
||
|
ConstantInt *zeroInt =
|
||
|
ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
|
||
|
ZeroIdxList.push_back(zeroInt);
|
||
|
|
||
|
GetElementPtrInst *BufferIdx = GetElementPtrInst::Create(
|
||
|
nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch);
|
||
|
|
||
|
Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
|
||
|
Value *id_gep_cast =
|
||
|
new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
|
||
|
|
||
|
new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, Brnch);
|
||
|
|
||
|
SmallVector<Value *, 2> FourthIdxList;
|
||
|
ConstantInt *fourInt =
|
||
|
ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
|
||
|
|
||
|
FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
|
||
|
// the following GEP is the buffer pointer
|
||
|
BufferIdx = GetElementPtrInst::Create(nullptr, pcall, FourthIdxList,
|
||
|
"PrintBuffGep", Brnch);
|
||
|
|
||
|
Type *Int32Ty = Type::getInt32Ty(Ctx);
|
||
|
Type *Int64Ty = Type::getInt64Ty(Ctx);
|
||
|
for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
|
||
|
ArgCount <= OpConvSpecifiers.size();
|
||
|
ArgCount++) {
|
||
|
Value *Arg = CI->getArgOperand(ArgCount);
|
||
|
Type *ArgType = Arg->getType();
|
||
|
SmallVector<Value *, 32> WhatToStore;
|
||
|
if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) {
|
||
|
Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
|
||
|
if (OpConvSpecifiers[ArgCount - 1] == 'f') {
|
||
|
if (auto *FpCons = dyn_cast<ConstantFP>(Arg)) {
|
||
|
APFloat Val(FpCons->getValueAPF());
|
||
|
bool Lost = false;
|
||
|
Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
|
||
|
&Lost);
|
||
|
Arg = ConstantFP::get(Ctx, Val);
|
||
|
IType = Int32Ty;
|
||
|
} else if (auto *FpExt = dyn_cast<FPExtInst>(Arg)) {
|
||
|
if (FpExt->getType()->isDoubleTy() &&
|
||
|
FpExt->getOperand(0)->getType()->isFloatTy()) {
|
||
|
Arg = FpExt->getOperand(0);
|
||
|
IType = Int32Ty;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
|
||
|
WhatToStore.push_back(Arg);
|
||
|
} else if (ArgType->getTypeID() == Type::PointerTyID) {
|
||
|
if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
|
||
|
const char *S = NonLiteralStr;
|
||
|
if (auto *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
|
||
|
auto *GV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
|
||
|
if (GV && GV->hasInitializer()) {
|
||
|
Constant *Init = GV->getInitializer();
|
||
|
bool IsZeroValue = Init->isZeroValue();
|
||
|
auto *CA = dyn_cast<ConstantDataArray>(Init);
|
||
|
if (IsZeroValue || (CA && CA->isString())) {
|
||
|
S = IsZeroValue ? "" : CA->getAsCString().data();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
size_t SizeStr = strlen(S) + 1;
|
||
|
size_t Rem = SizeStr % DWORD_ALIGN;
|
||
|
size_t NSizeStr = 0;
|
||
|
if (Rem) {
|
||
|
NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
|
||
|
} else {
|
||
|
NSizeStr = SizeStr;
|
||
|
}
|
||
|
if (S[0]) {
|
||
|
char *MyNewStr = new char[NSizeStr]();
|
||
|
strcpy(MyNewStr, S);
|
||
|
int NumInts = NSizeStr / 4;
|
||
|
int CharC = 0;
|
||
|
while (NumInts) {
|
||
|
int ANum = *(int *)(MyNewStr + CharC);
|
||
|
CharC += 4;
|
||
|
NumInts--;
|
||
|
Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
|
||
|
WhatToStore.push_back(ANumV);
|
||
|
}
|
||
|
delete[] MyNewStr;
|
||
|
} else {
|
||
|
// Empty string, give a hint to RT it is no NULL
|
||
|
Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
|
||
|
WhatToStore.push_back(ANumV);
|
||
|
}
|
||
|
} else {
|
||
|
uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
|
||
|
assert((Size == 32 || Size == 64) && "unsupported size");
|
||
|
Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
|
||
|
Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
|
||
|
WhatToStore.push_back(Arg);
|
||
|
}
|
||
|
} else if (isa<FixedVectorType>(ArgType)) {
|
||
|
Type *IType = NULL;
|
||
|
uint32_t EleCount = cast<FixedVectorType>(ArgType)->getNumElements();
|
||
|
uint32_t EleSize = ArgType->getScalarSizeInBits();
|
||
|
uint32_t TotalSize = EleCount * EleSize;
|
||
|
if (EleCount == 3) {
|
||
|
ShuffleVectorInst *Shuffle =
|
||
|
new ShuffleVectorInst(Arg, Arg, ArrayRef<int>{0, 1, 2, 2});
|
||
|
Shuffle->insertBefore(Brnch);
|
||
|
Arg = Shuffle;
|
||
|
ArgType = Arg->getType();
|
||
|
TotalSize += EleSize;
|
||
|
}
|
||
|
switch (EleSize) {
|
||
|
default:
|
||
|
EleCount = TotalSize / 64;
|
||
|
IType = Type::getInt64Ty(ArgType->getContext());
|
||
|
break;
|
||
|
case 8:
|
||
|
if (EleCount >= 8) {
|
||
|
EleCount = TotalSize / 64;
|
||
|
IType = Type::getInt64Ty(ArgType->getContext());
|
||
|
} else if (EleCount >= 3) {
|
||
|
EleCount = 1;
|
||
|
IType = Type::getInt32Ty(ArgType->getContext());
|
||
|
} else {
|
||
|
EleCount = 1;
|
||
|
IType = Type::getInt16Ty(ArgType->getContext());
|
||
|
}
|
||
|
break;
|
||
|
case 16:
|
||
|
if (EleCount >= 3) {
|
||
|
EleCount = TotalSize / 64;
|
||
|
IType = Type::getInt64Ty(ArgType->getContext());
|
||
|
} else {
|
||
|
EleCount = 1;
|
||
|
IType = Type::getInt32Ty(ArgType->getContext());
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
if (EleCount > 1) {
|
||
|
IType = FixedVectorType::get(IType, EleCount);
|
||
|
}
|
||
|
Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
|
||
|
WhatToStore.push_back(Arg);
|
||
|
} else {
|
||
|
WhatToStore.push_back(Arg);
|
||
|
}
|
||
|
for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
|
||
|
Value *TheBtCast = WhatToStore[I];
|
||
|
unsigned ArgSize =
|
||
|
TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
|
||
|
SmallVector<Value *, 1> BuffOffset;
|
||
|
BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
|
||
|
|
||
|
Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
|
||
|
Value *CastedGEP =
|
||
|
new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
|
||
|
StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
|
||
|
LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
|
||
|
<< *StBuff << '\n');
|
||
|
(void)StBuff;
|
||
|
if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
|
||
|
break;
|
||
|
BufferIdx = GetElementPtrInst::Create(nullptr, BufferIdx, BuffOffset,
|
||
|
"PrintBuffNextPtr", Brnch);
|
||
|
LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
|
||
|
<< *BufferIdx << '\n');
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// erase the printf calls
|
||
|
for (auto CI : Printfs)
|
||
|
CI->eraseFromParent();
|
||
|
|
||
|
Printfs.clear();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) {
|
||
|
Triple TT(M.getTargetTriple());
|
||
|
if (TT.getArch() == Triple::r600)
|
||
|
return false;
|
||
|
|
||
|
auto PrintfFunction = M.getFunction("printf");
|
||
|
if (!PrintfFunction)
|
||
|
return false;
|
||
|
|
||
|
for (auto &U : PrintfFunction->uses()) {
|
||
|
if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
|
||
|
if (CI->isCallee(&U))
|
||
|
Printfs.push_back(CI);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Printfs.empty())
|
||
|
return false;
|
||
|
|
||
|
if (auto HostcallFunction = M.getFunction("__ockl_hostcall_internal")) {
|
||
|
for (auto &U : HostcallFunction->uses()) {
|
||
|
if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
|
||
|
M.getContext().emitError(
|
||
|
CI, "Cannot use both printf and hostcall in the same module");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TD = &M.getDataLayout();
|
||
|
|
||
|
return lowerPrintfForGpu(M);
|
||
|
}
|
||
|
|
||
|
bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
|
||
|
auto GetDT = [this](Function &F) -> DominatorTree & {
|
||
|
return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
|
||
|
};
|
||
|
auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
|
||
|
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
||
|
};
|
||
|
|
||
|
return AMDGPUPrintfRuntimeBindingImpl(GetDT, GetTLI).run(M);
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses
|
||
|
AMDGPUPrintfRuntimeBindingPass::run(Module &M, ModuleAnalysisManager &AM) {
|
||
|
FunctionAnalysisManager &FAM =
|
||
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
||
|
auto GetDT = [&FAM](Function &F) -> DominatorTree & {
|
||
|
return FAM.getResult<DominatorTreeAnalysis>(F);
|
||
|
};
|
||
|
auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
|
||
|
return FAM.getResult<TargetLibraryAnalysis>(F);
|
||
|
};
|
||
|
bool Changed = AMDGPUPrintfRuntimeBindingImpl(GetDT, GetTLI).run(M);
|
||
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
||
|
}
|