llvm-for-llvmta/include/llvm/MC/MCPseudoProbe.h

179 lines
6.5 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- MCPseudoProbe.h - Pseudo probe encoding support ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MCPseudoProbe to support the pseudo
// probe encoding for AutoFDO. Pseudo probes together with their inline context
// are encoded in a DFS recursive way in the .pseudoprobe sections. For each
// .pseudoprobe section, the encoded binary data consist of a single or mutiple
// function records each for one outlined function. A function record has the
// following format :
//
// FUNCTION BODY (one for each outlined function present in the text section)
// GUID (uint64)
// GUID of the function
// NPROBES (ULEB128)
// Number of probes originating from this function.
// NUM_INLINED_FUNCTIONS (ULEB128)
// Number of callees inlined into this function, aka number of
// first-level inlinees
// PROBE RECORDS
// A list of NPROBES entries. Each entry contains:
// INDEX (ULEB128)
// TYPE (uint4)
// 0 - block probe, 1 - indirect call, 2 - direct call
// ATTRIBUTE (uint3)
// reserved
// ADDRESS_TYPE (uint1)
// 0 - code address, 1 - address delta
// CODE_ADDRESS (uint64 or ULEB128)
// code address or address delta, depending on ADDRESS_TYPE
// INLINED FUNCTION RECORDS
// A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
// callees. Each record contains:
// INLINE SITE
// GUID of the inlinee (uint64)
// ID of the callsite probe (ULEB128)
// FUNCTION BODY
// A FUNCTION BODY entry describing the inlined function.
//===----------------------------------------------------------------------===//
#ifndef LLVM_MC_MCPSEUDOPROBE_H
#define LLVM_MC_MCPSEUDOPROBE_H
#include "llvm/ADT/MapVector.h"
#include "llvm/MC/MCSection.h"
#include <functional>
#include <map>
#include <vector>
namespace llvm {
class MCStreamer;
class MCSymbol;
class MCObjectStreamer;
enum class MCPseudoProbeFlag {
// If set, indicates that the probe is encoded as an address delta
// instead of a real code address.
AddressDelta = 0x1,
};
/// Instances of this class represent a pseudo probe instance for a pseudo probe
/// table entry, which is created during a machine instruction is assembled and
/// uses an address from a temporary label created at the current address in the
/// current section.
class MCPseudoProbe {
MCSymbol *Label;
uint64_t Guid;
uint64_t Index;
uint8_t Type;
uint8_t Attributes;
public:
MCPseudoProbe(MCSymbol *Label, uint64_t Guid, uint64_t Index, uint64_t Type,
uint64_t Attributes)
: Label(Label), Guid(Guid), Index(Index), Type(Type),
Attributes(Attributes) {
assert(Type <= 0xFF && "Probe type too big to encode, exceeding 2^8");
assert(Attributes <= 0xFF &&
"Probe attributes too big to encode, exceeding 2^16");
}
MCSymbol *getLabel() const { return Label; }
uint64_t getGuid() const { return Guid; }
uint64_t getIndex() const { return Index; }
uint8_t getType() const { return Type; }
uint8_t getAttributes() const { return Attributes; }
void emit(MCObjectStreamer *MCOS, const MCPseudoProbe *LastProbe) const;
};
// An inline frame has the form <Guid, ProbeID>
using InlineSite = std::tuple<uint64_t, uint32_t>;
using MCPseudoProbeInlineStack = SmallVector<InlineSite, 8>;
// A Tri-tree based data structure to group probes by inline stack.
// A tree is allocated for a standalone .text section. A fake
// instance is created as the root of a tree.
// A real instance of this class is created for each function, either an
// unlined function that has code in .text section or an inlined function.
class MCPseudoProbeInlineTree {
uint64_t Guid;
// Set of probes that come with the function.
std::vector<MCPseudoProbe> Probes;
// Use std::map for a deterministic output.
std::map<InlineSite, MCPseudoProbeInlineTree *> Inlinees;
// Root node has a GUID 0.
bool isRoot() { return Guid == 0; }
MCPseudoProbeInlineTree *getOrAddNode(InlineSite Site);
public:
MCPseudoProbeInlineTree() = default;
MCPseudoProbeInlineTree(uint64_t Guid) : Guid(Guid) {}
~MCPseudoProbeInlineTree();
void addPseudoProbe(const MCPseudoProbe &Probe,
const MCPseudoProbeInlineStack &InlineStack);
void emit(MCObjectStreamer *MCOS, const MCPseudoProbe *&LastProbe);
};
/// Instances of this class represent the pseudo probes inserted into a compile
/// unit.
class MCPseudoProbeSection {
public:
void addPseudoProbe(MCSection *Sec, const MCPseudoProbe &Probe,
const MCPseudoProbeInlineStack &InlineStack) {
MCProbeDivisions[Sec].addPseudoProbe(Probe, InlineStack);
}
// TODO: Sort by getOrdinal to ensure a determinstic section order
using MCProbeDivisionMap = std::map<MCSection *, MCPseudoProbeInlineTree>;
private:
// A collection of MCPseudoProbe for each text section. The MCPseudoProbes
// are grouped by GUID of the functions where they are from and will be
// encoded by groups. In the comdat scenario where a text section really only
// contains the code of a function solely, the probes associated with a comdat
// function are still grouped by GUIDs due to inlining that can bring probes
// from different functions into one function.
MCProbeDivisionMap MCProbeDivisions;
public:
const MCProbeDivisionMap &getMCProbes() const { return MCProbeDivisions; }
bool empty() const { return MCProbeDivisions.empty(); }
void emit(MCObjectStreamer *MCOS);
};
class MCPseudoProbeTable {
// A collection of MCPseudoProbe in the current module grouped by text
// sections. MCPseudoProbes will be encoded into a corresponding
// .pseudoprobe section. With functions emitted as separate comdats,
// a text section really only contains the code of a function solely, and the
// probes associated with the text section will be emitted into a standalone
// .pseudoprobe section that shares the same comdat group with the function.
MCPseudoProbeSection MCProbeSections;
public:
static void emit(MCObjectStreamer *MCOS);
MCPseudoProbeSection &getProbeSections() { return MCProbeSections; }
#ifndef NDEBUG
static int DdgPrintIndent;
#endif
};
} // end namespace llvm
#endif // LLVM_MC_MCPSEUDOPROBE_H