1042 lines
35 KiB
C
1042 lines
35 KiB
C
|
//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file declares the Value class.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_IR_VALUE_H
|
||
|
#define LLVM_IR_VALUE_H
|
||
|
|
||
|
#include "llvm-c/Types.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/StringRef.h"
|
||
|
#include "llvm/ADT/iterator_range.h"
|
||
|
#include "llvm/IR/Use.h"
|
||
|
#include "llvm/Support/Alignment.h"
|
||
|
#include "llvm/Support/CBindingWrapping.h"
|
||
|
#include "llvm/Support/Casting.h"
|
||
|
#include <cassert>
|
||
|
#include <iterator>
|
||
|
#include <memory>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
class APInt;
|
||
|
class Argument;
|
||
|
class BasicBlock;
|
||
|
class Constant;
|
||
|
class ConstantData;
|
||
|
class ConstantAggregate;
|
||
|
class DataLayout;
|
||
|
class Function;
|
||
|
class GlobalAlias;
|
||
|
class GlobalIFunc;
|
||
|
class GlobalIndirectSymbol;
|
||
|
class GlobalObject;
|
||
|
class GlobalValue;
|
||
|
class GlobalVariable;
|
||
|
class InlineAsm;
|
||
|
class Instruction;
|
||
|
class LLVMContext;
|
||
|
class MDNode;
|
||
|
class Module;
|
||
|
class ModuleSlotTracker;
|
||
|
class raw_ostream;
|
||
|
template<typename ValueTy> class StringMapEntry;
|
||
|
class Twine;
|
||
|
class Type;
|
||
|
class User;
|
||
|
|
||
|
using ValueName = StringMapEntry<Value *>;
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Value Class
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// LLVM Value Representation
|
||
|
///
|
||
|
/// This is a very important LLVM class. It is the base class of all values
|
||
|
/// computed by a program that may be used as operands to other values. Value is
|
||
|
/// the super class of other important classes such as Instruction and Function.
|
||
|
/// All Values have a Type. Type is not a subclass of Value. Some values can
|
||
|
/// have a name and they belong to some Module. Setting the name on the Value
|
||
|
/// automatically updates the module's symbol table.
|
||
|
///
|
||
|
/// Every value has a "use list" that keeps track of which other Values are
|
||
|
/// using this Value. A Value can also have an arbitrary number of ValueHandle
|
||
|
/// objects that watch it and listen to RAUW and Destroy events. See
|
||
|
/// llvm/IR/ValueHandle.h for details.
|
||
|
class Value {
|
||
|
Type *VTy;
|
||
|
Use *UseList;
|
||
|
|
||
|
friend class ValueAsMetadata; // Allow access to IsUsedByMD.
|
||
|
friend class ValueHandleBase;
|
||
|
|
||
|
const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
|
||
|
unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
|
||
|
|
||
|
protected:
|
||
|
/// Hold subclass data that can be dropped.
|
||
|
///
|
||
|
/// This member is similar to SubclassData, however it is for holding
|
||
|
/// information which may be used to aid optimization, but which may be
|
||
|
/// cleared to zero without affecting conservative interpretation.
|
||
|
unsigned char SubclassOptionalData : 7;
|
||
|
|
||
|
private:
|
||
|
/// Hold arbitrary subclass data.
|
||
|
///
|
||
|
/// This member is defined by this class, but is not used for anything.
|
||
|
/// Subclasses can use it to hold whatever state they find useful. This
|
||
|
/// field is initialized to zero by the ctor.
|
||
|
unsigned short SubclassData;
|
||
|
|
||
|
protected:
|
||
|
/// The number of operands in the subclass.
|
||
|
///
|
||
|
/// This member is defined by this class, but not used for anything.
|
||
|
/// Subclasses can use it to store their number of operands, if they have
|
||
|
/// any.
|
||
|
///
|
||
|
/// This is stored here to save space in User on 64-bit hosts. Since most
|
||
|
/// instances of Value have operands, 32-bit hosts aren't significantly
|
||
|
/// affected.
|
||
|
///
|
||
|
/// Note, this should *NOT* be used directly by any class other than User.
|
||
|
/// User uses this value to find the Use list.
|
||
|
enum : unsigned { NumUserOperandsBits = 27 };
|
||
|
unsigned NumUserOperands : NumUserOperandsBits;
|
||
|
|
||
|
// Use the same type as the bitfield above so that MSVC will pack them.
|
||
|
unsigned IsUsedByMD : 1;
|
||
|
unsigned HasName : 1;
|
||
|
unsigned HasMetadata : 1; // Has metadata attached to this?
|
||
|
unsigned HasHungOffUses : 1;
|
||
|
unsigned HasDescriptor : 1;
|
||
|
|
||
|
private:
|
||
|
template <typename UseT> // UseT == 'Use' or 'const Use'
|
||
|
class use_iterator_impl
|
||
|
: public std::iterator<std::forward_iterator_tag, UseT *> {
|
||
|
friend class Value;
|
||
|
|
||
|
UseT *U;
|
||
|
|
||
|
explicit use_iterator_impl(UseT *u) : U(u) {}
|
||
|
|
||
|
public:
|
||
|
use_iterator_impl() : U() {}
|
||
|
|
||
|
bool operator==(const use_iterator_impl &x) const { return U == x.U; }
|
||
|
bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
|
||
|
|
||
|
use_iterator_impl &operator++() { // Preincrement
|
||
|
assert(U && "Cannot increment end iterator!");
|
||
|
U = U->getNext();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
use_iterator_impl operator++(int) { // Postincrement
|
||
|
auto tmp = *this;
|
||
|
++*this;
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
UseT &operator*() const {
|
||
|
assert(U && "Cannot dereference end iterator!");
|
||
|
return *U;
|
||
|
}
|
||
|
|
||
|
UseT *operator->() const { return &operator*(); }
|
||
|
|
||
|
operator use_iterator_impl<const UseT>() const {
|
||
|
return use_iterator_impl<const UseT>(U);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename UserTy> // UserTy == 'User' or 'const User'
|
||
|
class user_iterator_impl
|
||
|
: public std::iterator<std::forward_iterator_tag, UserTy *> {
|
||
|
use_iterator_impl<Use> UI;
|
||
|
explicit user_iterator_impl(Use *U) : UI(U) {}
|
||
|
friend class Value;
|
||
|
|
||
|
public:
|
||
|
user_iterator_impl() = default;
|
||
|
|
||
|
bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
|
||
|
bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
|
||
|
|
||
|
/// Returns true if this iterator is equal to user_end() on the value.
|
||
|
bool atEnd() const { return *this == user_iterator_impl(); }
|
||
|
|
||
|
user_iterator_impl &operator++() { // Preincrement
|
||
|
++UI;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
user_iterator_impl operator++(int) { // Postincrement
|
||
|
auto tmp = *this;
|
||
|
++*this;
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
// Retrieve a pointer to the current User.
|
||
|
UserTy *operator*() const {
|
||
|
return UI->getUser();
|
||
|
}
|
||
|
|
||
|
UserTy *operator->() const { return operator*(); }
|
||
|
|
||
|
operator user_iterator_impl<const UserTy>() const {
|
||
|
return user_iterator_impl<const UserTy>(*UI);
|
||
|
}
|
||
|
|
||
|
Use &getUse() const { return *UI; }
|
||
|
};
|
||
|
|
||
|
protected:
|
||
|
Value(Type *Ty, unsigned scid);
|
||
|
|
||
|
/// Value's destructor should be virtual by design, but that would require
|
||
|
/// that Value and all of its subclasses have a vtable that effectively
|
||
|
/// duplicates the information in the value ID. As a size optimization, the
|
||
|
/// destructor has been protected, and the caller should manually call
|
||
|
/// deleteValue.
|
||
|
~Value(); // Use deleteValue() to delete a generic Value.
|
||
|
|
||
|
public:
|
||
|
Value(const Value &) = delete;
|
||
|
Value &operator=(const Value &) = delete;
|
||
|
|
||
|
/// Delete a pointer to a generic Value.
|
||
|
void deleteValue();
|
||
|
|
||
|
/// Support for debugging, callable in GDB: V->dump()
|
||
|
void dump() const;
|
||
|
|
||
|
/// Implement operator<< on Value.
|
||
|
/// @{
|
||
|
void print(raw_ostream &O, bool IsForDebug = false) const;
|
||
|
void print(raw_ostream &O, ModuleSlotTracker &MST,
|
||
|
bool IsForDebug = false) const;
|
||
|
/// @}
|
||
|
|
||
|
/// Print the name of this Value out to the specified raw_ostream.
|
||
|
///
|
||
|
/// This is useful when you just want to print 'int %reg126', not the
|
||
|
/// instruction that generated it. If you specify a Module for context, then
|
||
|
/// even constanst get pretty-printed; for example, the type of a null
|
||
|
/// pointer is printed symbolically.
|
||
|
/// @{
|
||
|
void printAsOperand(raw_ostream &O, bool PrintType = true,
|
||
|
const Module *M = nullptr) const;
|
||
|
void printAsOperand(raw_ostream &O, bool PrintType,
|
||
|
ModuleSlotTracker &MST) const;
|
||
|
/// @}
|
||
|
|
||
|
/// All values are typed, get the type of this value.
|
||
|
Type *getType() const { return VTy; }
|
||
|
|
||
|
/// All values hold a context through their type.
|
||
|
LLVMContext &getContext() const;
|
||
|
|
||
|
// All values can potentially be named.
|
||
|
bool hasName() const { return HasName; }
|
||
|
ValueName *getValueName() const;
|
||
|
void setValueName(ValueName *VN);
|
||
|
|
||
|
private:
|
||
|
void destroyValueName();
|
||
|
enum class ReplaceMetadataUses { No, Yes };
|
||
|
void doRAUW(Value *New, ReplaceMetadataUses);
|
||
|
void setNameImpl(const Twine &Name);
|
||
|
|
||
|
public:
|
||
|
/// Return a constant reference to the value's name.
|
||
|
///
|
||
|
/// This guaranteed to return the same reference as long as the value is not
|
||
|
/// modified. If the value has a name, this does a hashtable lookup, so it's
|
||
|
/// not free.
|
||
|
StringRef getName() const;
|
||
|
|
||
|
/// Change the name of the value.
|
||
|
///
|
||
|
/// Choose a new unique name if the provided name is taken.
|
||
|
///
|
||
|
/// \param Name The new name; or "" if the value's name should be removed.
|
||
|
void setName(const Twine &Name);
|
||
|
|
||
|
/// Transfer the name from V to this value.
|
||
|
///
|
||
|
/// After taking V's name, sets V's name to empty.
|
||
|
///
|
||
|
/// \note It is an error to call V->takeName(V).
|
||
|
void takeName(Value *V);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
std::string getNameOrAsOperand() const;
|
||
|
#endif
|
||
|
|
||
|
/// Change all uses of this to point to a new Value.
|
||
|
///
|
||
|
/// Go through the uses list for this definition and make each use point to
|
||
|
/// "V" instead of "this". After this completes, 'this's use list is
|
||
|
/// guaranteed to be empty.
|
||
|
void replaceAllUsesWith(Value *V);
|
||
|
|
||
|
/// Change non-metadata uses of this to point to a new Value.
|
||
|
///
|
||
|
/// Go through the uses list for this definition and make each use point to
|
||
|
/// "V" instead of "this". This function skips metadata entries in the list.
|
||
|
void replaceNonMetadataUsesWith(Value *V);
|
||
|
|
||
|
/// Go through the uses list for this definition and make each use point
|
||
|
/// to "V" if the callback ShouldReplace returns true for the given Use.
|
||
|
/// Unlike replaceAllUsesWith() this function does not support basic block
|
||
|
/// values or constant users.
|
||
|
void replaceUsesWithIf(Value *New,
|
||
|
llvm::function_ref<bool(Use &U)> ShouldReplace) {
|
||
|
assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
|
||
|
assert(New->getType() == getType() &&
|
||
|
"replaceUses of value with new value of different type!");
|
||
|
|
||
|
for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
|
||
|
Use &U = *UI;
|
||
|
++UI;
|
||
|
if (!ShouldReplace(U))
|
||
|
continue;
|
||
|
U.set(New);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// replaceUsesOutsideBlock - Go through the uses list for this definition and
|
||
|
/// make each use point to "V" instead of "this" when the use is outside the
|
||
|
/// block. 'This's use list is expected to have at least one element.
|
||
|
/// Unlike replaceAllUsesWith() this function does not support basic block
|
||
|
/// values or constant users.
|
||
|
void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
|
||
|
|
||
|
//----------------------------------------------------------------------
|
||
|
// Methods for handling the chain of uses of this Value.
|
||
|
//
|
||
|
// Materializing a function can introduce new uses, so these methods come in
|
||
|
// two variants:
|
||
|
// The methods that start with materialized_ check the uses that are
|
||
|
// currently known given which functions are materialized. Be very careful
|
||
|
// when using them since you might not get all uses.
|
||
|
// The methods that don't start with materialized_ assert that modules is
|
||
|
// fully materialized.
|
||
|
void assertModuleIsMaterializedImpl() const;
|
||
|
// This indirection exists so we can keep assertModuleIsMaterializedImpl()
|
||
|
// around in release builds of Value.cpp to be linked with other code built
|
||
|
// in debug mode. But this avoids calling it in any of the release built code.
|
||
|
void assertModuleIsMaterialized() const {
|
||
|
#ifndef NDEBUG
|
||
|
assertModuleIsMaterializedImpl();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool use_empty() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return UseList == nullptr;
|
||
|
}
|
||
|
|
||
|
bool materialized_use_empty() const {
|
||
|
return UseList == nullptr;
|
||
|
}
|
||
|
|
||
|
using use_iterator = use_iterator_impl<Use>;
|
||
|
using const_use_iterator = use_iterator_impl<const Use>;
|
||
|
|
||
|
use_iterator materialized_use_begin() { return use_iterator(UseList); }
|
||
|
const_use_iterator materialized_use_begin() const {
|
||
|
return const_use_iterator(UseList);
|
||
|
}
|
||
|
use_iterator use_begin() {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_use_begin();
|
||
|
}
|
||
|
const_use_iterator use_begin() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_use_begin();
|
||
|
}
|
||
|
use_iterator use_end() { return use_iterator(); }
|
||
|
const_use_iterator use_end() const { return const_use_iterator(); }
|
||
|
iterator_range<use_iterator> materialized_uses() {
|
||
|
return make_range(materialized_use_begin(), use_end());
|
||
|
}
|
||
|
iterator_range<const_use_iterator> materialized_uses() const {
|
||
|
return make_range(materialized_use_begin(), use_end());
|
||
|
}
|
||
|
iterator_range<use_iterator> uses() {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_uses();
|
||
|
}
|
||
|
iterator_range<const_use_iterator> uses() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_uses();
|
||
|
}
|
||
|
|
||
|
bool user_empty() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return UseList == nullptr;
|
||
|
}
|
||
|
|
||
|
using user_iterator = user_iterator_impl<User>;
|
||
|
using const_user_iterator = user_iterator_impl<const User>;
|
||
|
|
||
|
user_iterator materialized_user_begin() { return user_iterator(UseList); }
|
||
|
const_user_iterator materialized_user_begin() const {
|
||
|
return const_user_iterator(UseList);
|
||
|
}
|
||
|
user_iterator user_begin() {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_user_begin();
|
||
|
}
|
||
|
const_user_iterator user_begin() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_user_begin();
|
||
|
}
|
||
|
user_iterator user_end() { return user_iterator(); }
|
||
|
const_user_iterator user_end() const { return const_user_iterator(); }
|
||
|
User *user_back() {
|
||
|
assertModuleIsMaterialized();
|
||
|
return *materialized_user_begin();
|
||
|
}
|
||
|
const User *user_back() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return *materialized_user_begin();
|
||
|
}
|
||
|
iterator_range<user_iterator> materialized_users() {
|
||
|
return make_range(materialized_user_begin(), user_end());
|
||
|
}
|
||
|
iterator_range<const_user_iterator> materialized_users() const {
|
||
|
return make_range(materialized_user_begin(), user_end());
|
||
|
}
|
||
|
iterator_range<user_iterator> users() {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_users();
|
||
|
}
|
||
|
iterator_range<const_user_iterator> users() const {
|
||
|
assertModuleIsMaterialized();
|
||
|
return materialized_users();
|
||
|
}
|
||
|
|
||
|
/// Return true if there is exactly one use of this value.
|
||
|
///
|
||
|
/// This is specialized because it is a common request and does not require
|
||
|
/// traversing the whole use list.
|
||
|
bool hasOneUse() const { return hasSingleElement(uses()); }
|
||
|
|
||
|
/// Return true if this Value has exactly N uses.
|
||
|
bool hasNUses(unsigned N) const;
|
||
|
|
||
|
/// Return true if this value has N uses or more.
|
||
|
///
|
||
|
/// This is logically equivalent to getNumUses() >= N.
|
||
|
bool hasNUsesOrMore(unsigned N) const;
|
||
|
|
||
|
/// Return true if there is exactly one user of this value.
|
||
|
///
|
||
|
/// Note that this is not the same as "has one use". If a value has one use,
|
||
|
/// then there certainly is a single user. But if value has several uses,
|
||
|
/// it is possible that all uses are in a single user, or not.
|
||
|
///
|
||
|
/// This check is potentially costly, since it requires traversing,
|
||
|
/// in the worst case, the whole use list of a value.
|
||
|
bool hasOneUser() const;
|
||
|
|
||
|
/// Return true if there is exactly one use of this value that cannot be
|
||
|
/// dropped.
|
||
|
///
|
||
|
/// This is specialized because it is a common request and does not require
|
||
|
/// traversing the whole use list.
|
||
|
Use *getSingleUndroppableUse();
|
||
|
|
||
|
/// Return true if there this value.
|
||
|
///
|
||
|
/// This is specialized because it is a common request and does not require
|
||
|
/// traversing the whole use list.
|
||
|
bool hasNUndroppableUses(unsigned N) const;
|
||
|
|
||
|
/// Return true if this value has N uses or more.
|
||
|
///
|
||
|
/// This is logically equivalent to getNumUses() >= N.
|
||
|
bool hasNUndroppableUsesOrMore(unsigned N) const;
|
||
|
|
||
|
/// Remove every uses that can safely be removed.
|
||
|
///
|
||
|
/// This will remove for example uses in llvm.assume.
|
||
|
/// This should be used when performing want to perform a tranformation but
|
||
|
/// some Droppable uses pervent it.
|
||
|
/// This function optionally takes a filter to only remove some droppable
|
||
|
/// uses.
|
||
|
void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
|
||
|
[](const Use *) { return true; });
|
||
|
|
||
|
/// Remove every use of this value in \p User that can safely be removed.
|
||
|
void dropDroppableUsesIn(User &Usr);
|
||
|
|
||
|
/// Remove the droppable use \p U.
|
||
|
static void dropDroppableUse(Use &U);
|
||
|
|
||
|
/// Check if this value is used in the specified basic block.
|
||
|
bool isUsedInBasicBlock(const BasicBlock *BB) const;
|
||
|
|
||
|
/// This method computes the number of uses of this Value.
|
||
|
///
|
||
|
/// This is a linear time operation. Use hasOneUse, hasNUses, or
|
||
|
/// hasNUsesOrMore to check for specific values.
|
||
|
unsigned getNumUses() const;
|
||
|
|
||
|
/// This method should only be used by the Use class.
|
||
|
void addUse(Use &U) { U.addToList(&UseList); }
|
||
|
|
||
|
/// Concrete subclass of this.
|
||
|
///
|
||
|
/// An enumeration for keeping track of the concrete subclass of Value that
|
||
|
/// is actually instantiated. Values of this enumeration are kept in the
|
||
|
/// Value classes SubclassID field. They are used for concrete type
|
||
|
/// identification.
|
||
|
enum ValueTy {
|
||
|
#define HANDLE_VALUE(Name) Name##Val,
|
||
|
#include "llvm/IR/Value.def"
|
||
|
|
||
|
// Markers:
|
||
|
#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
|
||
|
#include "llvm/IR/Value.def"
|
||
|
};
|
||
|
|
||
|
/// Return an ID for the concrete type of this object.
|
||
|
///
|
||
|
/// This is used to implement the classof checks. This should not be used
|
||
|
/// for any other purpose, as the values may change as LLVM evolves. Also,
|
||
|
/// note that for instructions, the Instruction's opcode is added to
|
||
|
/// InstructionVal. So this means three things:
|
||
|
/// # there is no value with code InstructionVal (no opcode==0).
|
||
|
/// # there are more possible values for the value type than in ValueTy enum.
|
||
|
/// # the InstructionVal enumerator must be the highest valued enumerator in
|
||
|
/// the ValueTy enum.
|
||
|
unsigned getValueID() const {
|
||
|
return SubclassID;
|
||
|
}
|
||
|
|
||
|
/// Return the raw optional flags value contained in this value.
|
||
|
///
|
||
|
/// This should only be used when testing two Values for equivalence.
|
||
|
unsigned getRawSubclassOptionalData() const {
|
||
|
return SubclassOptionalData;
|
||
|
}
|
||
|
|
||
|
/// Clear the optional flags contained in this value.
|
||
|
void clearSubclassOptionalData() {
|
||
|
SubclassOptionalData = 0;
|
||
|
}
|
||
|
|
||
|
/// Check the optional flags for equality.
|
||
|
bool hasSameSubclassOptionalData(const Value *V) const {
|
||
|
return SubclassOptionalData == V->SubclassOptionalData;
|
||
|
}
|
||
|
|
||
|
/// Return true if there is a value handle associated with this value.
|
||
|
bool hasValueHandle() const { return HasValueHandle; }
|
||
|
|
||
|
/// Return true if there is metadata referencing this value.
|
||
|
bool isUsedByMetadata() const { return IsUsedByMD; }
|
||
|
|
||
|
protected:
|
||
|
/// Get the current metadata attachments for the given kind, if any.
|
||
|
///
|
||
|
/// These functions require that the value have at most a single attachment
|
||
|
/// of the given kind, and return \c nullptr if such an attachment is missing.
|
||
|
/// @{
|
||
|
MDNode *getMetadata(unsigned KindID) const;
|
||
|
MDNode *getMetadata(StringRef Kind) const;
|
||
|
/// @}
|
||
|
|
||
|
/// Appends all attachments with the given ID to \c MDs in insertion order.
|
||
|
/// If the Value has no attachments with the given ID, or if ID is invalid,
|
||
|
/// leaves MDs unchanged.
|
||
|
/// @{
|
||
|
void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const;
|
||
|
void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const;
|
||
|
/// @}
|
||
|
|
||
|
/// Appends all metadata attached to this value to \c MDs, sorting by
|
||
|
/// KindID. The first element of each pair returned is the KindID, the second
|
||
|
/// element is the metadata value. Attachments with the same ID appear in
|
||
|
/// insertion order.
|
||
|
void
|
||
|
getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const;
|
||
|
|
||
|
/// Return true if this value has any metadata attached to it.
|
||
|
bool hasMetadata() const { return (bool)HasMetadata; }
|
||
|
|
||
|
/// Return true if this value has the given type of metadata attached.
|
||
|
/// @{
|
||
|
bool hasMetadata(unsigned KindID) const {
|
||
|
return getMetadata(KindID) != nullptr;
|
||
|
}
|
||
|
bool hasMetadata(StringRef Kind) const {
|
||
|
return getMetadata(Kind) != nullptr;
|
||
|
}
|
||
|
/// @}
|
||
|
|
||
|
/// Set a particular kind of metadata attachment.
|
||
|
///
|
||
|
/// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or
|
||
|
/// replacing it if it already exists.
|
||
|
/// @{
|
||
|
void setMetadata(unsigned KindID, MDNode *Node);
|
||
|
void setMetadata(StringRef Kind, MDNode *Node);
|
||
|
/// @}
|
||
|
|
||
|
/// Add a metadata attachment.
|
||
|
/// @{
|
||
|
void addMetadata(unsigned KindID, MDNode &MD);
|
||
|
void addMetadata(StringRef Kind, MDNode &MD);
|
||
|
/// @}
|
||
|
|
||
|
/// Erase all metadata attachments with the given kind.
|
||
|
///
|
||
|
/// \returns true if any metadata was removed.
|
||
|
bool eraseMetadata(unsigned KindID);
|
||
|
|
||
|
/// Erase all metadata attached to this Value.
|
||
|
void clearMetadata();
|
||
|
|
||
|
public:
|
||
|
/// Return true if this value is a swifterror value.
|
||
|
///
|
||
|
/// swifterror values can be either a function argument or an alloca with a
|
||
|
/// swifterror attribute.
|
||
|
bool isSwiftError() const;
|
||
|
|
||
|
/// Strip off pointer casts, all-zero GEPs and address space casts.
|
||
|
///
|
||
|
/// Returns the original uncasted value. If this is called on a non-pointer
|
||
|
/// value, it returns 'this'.
|
||
|
const Value *stripPointerCasts() const;
|
||
|
Value *stripPointerCasts() {
|
||
|
return const_cast<Value *>(
|
||
|
static_cast<const Value *>(this)->stripPointerCasts());
|
||
|
}
|
||
|
|
||
|
/// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
|
||
|
///
|
||
|
/// Returns the original uncasted value. If this is called on a non-pointer
|
||
|
/// value, it returns 'this'.
|
||
|
const Value *stripPointerCastsAndAliases() const;
|
||
|
Value *stripPointerCastsAndAliases() {
|
||
|
return const_cast<Value *>(
|
||
|
static_cast<const Value *>(this)->stripPointerCastsAndAliases());
|
||
|
}
|
||
|
|
||
|
/// Strip off pointer casts, all-zero GEPs and address space casts
|
||
|
/// but ensures the representation of the result stays the same.
|
||
|
///
|
||
|
/// Returns the original uncasted value with the same representation. If this
|
||
|
/// is called on a non-pointer value, it returns 'this'.
|
||
|
const Value *stripPointerCastsSameRepresentation() const;
|
||
|
Value *stripPointerCastsSameRepresentation() {
|
||
|
return const_cast<Value *>(static_cast<const Value *>(this)
|
||
|
->stripPointerCastsSameRepresentation());
|
||
|
}
|
||
|
|
||
|
/// Strip off pointer casts, all-zero GEPs and invariant group info.
|
||
|
///
|
||
|
/// Returns the original uncasted value. If this is called on a non-pointer
|
||
|
/// value, it returns 'this'. This function should be used only in
|
||
|
/// Alias analysis.
|
||
|
const Value *stripPointerCastsAndInvariantGroups() const;
|
||
|
Value *stripPointerCastsAndInvariantGroups() {
|
||
|
return const_cast<Value *>(static_cast<const Value *>(this)
|
||
|
->stripPointerCastsAndInvariantGroups());
|
||
|
}
|
||
|
|
||
|
/// Strip off pointer casts and all-constant inbounds GEPs.
|
||
|
///
|
||
|
/// Returns the original pointer value. If this is called on a non-pointer
|
||
|
/// value, it returns 'this'.
|
||
|
const Value *stripInBoundsConstantOffsets() const;
|
||
|
Value *stripInBoundsConstantOffsets() {
|
||
|
return const_cast<Value *>(
|
||
|
static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
|
||
|
}
|
||
|
|
||
|
/// Accumulate the constant offset this value has compared to a base pointer.
|
||
|
/// Only 'getelementptr' instructions (GEPs) are accumulated but other
|
||
|
/// instructions, e.g., casts, are stripped away as well.
|
||
|
/// The accumulated constant offset is added to \p Offset and the base
|
||
|
/// pointer is returned.
|
||
|
///
|
||
|
/// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
|
||
|
/// the address space of 'this' pointer value, e.g., use
|
||
|
/// DataLayout::getIndexTypeSizeInBits(Ty).
|
||
|
///
|
||
|
/// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
|
||
|
/// accumulated even if the GEP is not "inbounds".
|
||
|
///
|
||
|
/// If \p ExternalAnalysis is provided it will be used to calculate a offset
|
||
|
/// when a operand of GEP is not constant.
|
||
|
/// For example, for a value \p ExternalAnalysis might try to calculate a
|
||
|
/// lower bound. If \p ExternalAnalysis is successful, it should return true.
|
||
|
///
|
||
|
/// If this is called on a non-pointer value, it returns 'this' and the
|
||
|
/// \p Offset is not modified.
|
||
|
///
|
||
|
/// Note that this function will never return a nullptr. It will also never
|
||
|
/// manipulate the \p Offset in a way that would not match the difference
|
||
|
/// between the underlying value and the returned one. Thus, if no constant
|
||
|
/// offset was found, the returned value is the underlying one and \p Offset
|
||
|
/// is unchanged.
|
||
|
const Value *stripAndAccumulateConstantOffsets(
|
||
|
const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
|
||
|
function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
|
||
|
nullptr) const;
|
||
|
Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
|
||
|
bool AllowNonInbounds) {
|
||
|
return const_cast<Value *>(
|
||
|
static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
|
||
|
DL, Offset, AllowNonInbounds));
|
||
|
}
|
||
|
|
||
|
/// This is a wrapper around stripAndAccumulateConstantOffsets with the
|
||
|
/// in-bounds requirement set to false.
|
||
|
const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
|
||
|
APInt &Offset) const {
|
||
|
return stripAndAccumulateConstantOffsets(DL, Offset,
|
||
|
/* AllowNonInbounds */ false);
|
||
|
}
|
||
|
Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
|
||
|
APInt &Offset) {
|
||
|
return stripAndAccumulateConstantOffsets(DL, Offset,
|
||
|
/* AllowNonInbounds */ false);
|
||
|
}
|
||
|
|
||
|
/// Strip off pointer casts and inbounds GEPs.
|
||
|
///
|
||
|
/// Returns the original pointer value. If this is called on a non-pointer
|
||
|
/// value, it returns 'this'.
|
||
|
const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
|
||
|
[](const Value *) {}) const;
|
||
|
inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
|
||
|
[](const Value *) {}) {
|
||
|
return const_cast<Value *>(
|
||
|
static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
|
||
|
}
|
||
|
|
||
|
/// Returns the number of bytes known to be dereferenceable for the
|
||
|
/// pointer value.
|
||
|
///
|
||
|
/// If CanBeNull is set by this function the pointer can either be null or be
|
||
|
/// dereferenceable up to the returned number of bytes.
|
||
|
uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
|
||
|
bool &CanBeNull) const;
|
||
|
|
||
|
/// Returns an alignment of the pointer value.
|
||
|
///
|
||
|
/// Returns an alignment which is either specified explicitly, e.g. via
|
||
|
/// align attribute of a function argument, or guaranteed by DataLayout.
|
||
|
Align getPointerAlignment(const DataLayout &DL) const;
|
||
|
|
||
|
/// Translate PHI node to its predecessor from the given basic block.
|
||
|
///
|
||
|
/// If this value is a PHI node with CurBB as its parent, return the value in
|
||
|
/// the PHI node corresponding to PredBB. If not, return ourself. This is
|
||
|
/// useful if you want to know the value something has in a predecessor
|
||
|
/// block.
|
||
|
const Value *DoPHITranslation(const BasicBlock *CurBB,
|
||
|
const BasicBlock *PredBB) const;
|
||
|
Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
|
||
|
return const_cast<Value *>(
|
||
|
static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
|
||
|
}
|
||
|
|
||
|
/// The maximum alignment for instructions.
|
||
|
///
|
||
|
/// This is the greatest alignment value supported by load, store, and alloca
|
||
|
/// instructions, and global values.
|
||
|
static const unsigned MaxAlignmentExponent = 29;
|
||
|
static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
|
||
|
|
||
|
/// Mutate the type of this Value to be of the specified type.
|
||
|
///
|
||
|
/// Note that this is an extremely dangerous operation which can create
|
||
|
/// completely invalid IR very easily. It is strongly recommended that you
|
||
|
/// recreate IR objects with the right types instead of mutating them in
|
||
|
/// place.
|
||
|
void mutateType(Type *Ty) {
|
||
|
VTy = Ty;
|
||
|
}
|
||
|
|
||
|
/// Sort the use-list.
|
||
|
///
|
||
|
/// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
|
||
|
/// expected to compare two \a Use references.
|
||
|
template <class Compare> void sortUseList(Compare Cmp);
|
||
|
|
||
|
/// Reverse the use-list.
|
||
|
void reverseUseList();
|
||
|
|
||
|
private:
|
||
|
/// Merge two lists together.
|
||
|
///
|
||
|
/// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
|
||
|
/// "equal" items from L before items from R.
|
||
|
///
|
||
|
/// \return the first element in the list.
|
||
|
///
|
||
|
/// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
|
||
|
template <class Compare>
|
||
|
static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
|
||
|
Use *Merged;
|
||
|
Use **Next = &Merged;
|
||
|
|
||
|
while (true) {
|
||
|
if (!L) {
|
||
|
*Next = R;
|
||
|
break;
|
||
|
}
|
||
|
if (!R) {
|
||
|
*Next = L;
|
||
|
break;
|
||
|
}
|
||
|
if (Cmp(*R, *L)) {
|
||
|
*Next = R;
|
||
|
Next = &R->Next;
|
||
|
R = R->Next;
|
||
|
} else {
|
||
|
*Next = L;
|
||
|
Next = &L->Next;
|
||
|
L = L->Next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Merged;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
unsigned short getSubclassDataFromValue() const { return SubclassData; }
|
||
|
void setValueSubclassData(unsigned short D) { SubclassData = D; }
|
||
|
};
|
||
|
|
||
|
struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
|
||
|
|
||
|
/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
|
||
|
/// Those don't work because Value and Instruction's destructors are protected,
|
||
|
/// aren't virtual, and won't destroy the complete object.
|
||
|
using unique_value = std::unique_ptr<Value, ValueDeleter>;
|
||
|
|
||
|
inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
|
||
|
V.print(OS);
|
||
|
return OS;
|
||
|
}
|
||
|
|
||
|
void Use::set(Value *V) {
|
||
|
if (Val) removeFromList();
|
||
|
Val = V;
|
||
|
if (V) V->addUse(*this);
|
||
|
}
|
||
|
|
||
|
Value *Use::operator=(Value *RHS) {
|
||
|
set(RHS);
|
||
|
return RHS;
|
||
|
}
|
||
|
|
||
|
const Use &Use::operator=(const Use &RHS) {
|
||
|
set(RHS.Val);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class Compare> void Value::sortUseList(Compare Cmp) {
|
||
|
if (!UseList || !UseList->Next)
|
||
|
// No need to sort 0 or 1 uses.
|
||
|
return;
|
||
|
|
||
|
// Note: this function completely ignores Prev pointers until the end when
|
||
|
// they're fixed en masse.
|
||
|
|
||
|
// Create a binomial vector of sorted lists, visiting uses one at a time and
|
||
|
// merging lists as necessary.
|
||
|
const unsigned MaxSlots = 32;
|
||
|
Use *Slots[MaxSlots];
|
||
|
|
||
|
// Collect the first use, turning it into a single-item list.
|
||
|
Use *Next = UseList->Next;
|
||
|
UseList->Next = nullptr;
|
||
|
unsigned NumSlots = 1;
|
||
|
Slots[0] = UseList;
|
||
|
|
||
|
// Collect all but the last use.
|
||
|
while (Next->Next) {
|
||
|
Use *Current = Next;
|
||
|
Next = Current->Next;
|
||
|
|
||
|
// Turn Current into a single-item list.
|
||
|
Current->Next = nullptr;
|
||
|
|
||
|
// Save Current in the first available slot, merging on collisions.
|
||
|
unsigned I;
|
||
|
for (I = 0; I < NumSlots; ++I) {
|
||
|
if (!Slots[I])
|
||
|
break;
|
||
|
|
||
|
// Merge two lists, doubling the size of Current and emptying slot I.
|
||
|
//
|
||
|
// Since the uses in Slots[I] originally preceded those in Current, send
|
||
|
// Slots[I] in as the left parameter to maintain a stable sort.
|
||
|
Current = mergeUseLists(Slots[I], Current, Cmp);
|
||
|
Slots[I] = nullptr;
|
||
|
}
|
||
|
// Check if this is a new slot.
|
||
|
if (I == NumSlots) {
|
||
|
++NumSlots;
|
||
|
assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
|
||
|
}
|
||
|
|
||
|
// Found an open slot.
|
||
|
Slots[I] = Current;
|
||
|
}
|
||
|
|
||
|
// Merge all the lists together.
|
||
|
assert(Next && "Expected one more Use");
|
||
|
assert(!Next->Next && "Expected only one Use");
|
||
|
UseList = Next;
|
||
|
for (unsigned I = 0; I < NumSlots; ++I)
|
||
|
if (Slots[I])
|
||
|
// Since the uses in Slots[I] originally preceded those in UseList, send
|
||
|
// Slots[I] in as the left parameter to maintain a stable sort.
|
||
|
UseList = mergeUseLists(Slots[I], UseList, Cmp);
|
||
|
|
||
|
// Fix the Prev pointers.
|
||
|
for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
|
||
|
I->Prev = Prev;
|
||
|
Prev = &I->Next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// isa - Provide some specializations of isa so that we don't have to include
|
||
|
// the subtype header files to test to see if the value is a subclass...
|
||
|
//
|
||
|
template <> struct isa_impl<Constant, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
|
||
|
return Val.getValueID() <= Value::ConstantLastVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<ConstantData, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() >= Value::ConstantDataFirstVal &&
|
||
|
Val.getValueID() <= Value::ConstantDataLastVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<ConstantAggregate, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
|
||
|
Val.getValueID() <= Value::ConstantAggregateLastVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<Argument, Value> {
|
||
|
static inline bool doit (const Value &Val) {
|
||
|
return Val.getValueID() == Value::ArgumentVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<InlineAsm, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() == Value::InlineAsmVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<Instruction, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() >= Value::InstructionVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<BasicBlock, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() == Value::BasicBlockVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<Function, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() == Value::FunctionVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<GlobalVariable, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() == Value::GlobalVariableVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<GlobalAlias, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() == Value::GlobalAliasVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<GlobalIFunc, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return Val.getValueID() == Value::GlobalIFuncVal;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<GlobalIndirectSymbol, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<GlobalValue, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct isa_impl<GlobalObject, Value> {
|
||
|
static inline bool doit(const Value &Val) {
|
||
|
return isa<GlobalVariable>(Val) || isa<Function>(Val);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Create wrappers for C Binding types (see CBindingWrapping.h).
|
||
|
DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
|
||
|
|
||
|
// Specialized opaque value conversions.
|
||
|
inline Value **unwrap(LLVMValueRef *Vals) {
|
||
|
return reinterpret_cast<Value**>(Vals);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
|
||
|
#ifndef NDEBUG
|
||
|
for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
|
||
|
unwrap<T>(*I); // For side effect of calling assert on invalid usage.
|
||
|
#endif
|
||
|
(void)Length;
|
||
|
return reinterpret_cast<T**>(Vals);
|
||
|
}
|
||
|
|
||
|
inline LLVMValueRef *wrap(const Value **Vals) {
|
||
|
return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
|
||
|
}
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_IR_VALUE_H
|