llvm-for-llvmta/include/llvm/IR/ConstantRange.h

532 lines
22 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges: :
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
// The other integral ranges use min/max values for special range values. For
// example, for 8-bit types, it uses:
// [0, 0) = {} = Empty set
// [255, 255) = {0..255} = Full Set
//
// Note that ConstantRange can be used to represent either signed or
// unsigned ranges.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANTRANGE_H
#define LLVM_IR_CONSTANTRANGE_H
#include "llvm/ADT/APInt.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/Compiler.h"
#include <cstdint>
namespace llvm {
class MDNode;
class raw_ostream;
struct KnownBits;
/// This class represents a range of values.
class LLVM_NODISCARD ConstantRange {
APInt Lower, Upper;
/// Create empty constant range with same bitwidth.
ConstantRange getEmpty() const {
return ConstantRange(getBitWidth(), false);
}
/// Create full constant range with same bitwidth.
ConstantRange getFull() const {
return ConstantRange(getBitWidth(), true);
}
public:
/// Initialize a full or empty set for the specified bit width.
explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
/// Initialize a range to hold the single specified value.
ConstantRange(APInt Value);
/// Initialize a range of values explicitly. This will assert out if
/// Lower==Upper and Lower != Min or Max value for its type. It will also
/// assert out if the two APInt's are not the same bit width.
ConstantRange(APInt Lower, APInt Upper);
/// Create empty constant range with the given bit width.
static ConstantRange getEmpty(uint32_t BitWidth) {
return ConstantRange(BitWidth, false);
}
/// Create full constant range with the given bit width.
static ConstantRange getFull(uint32_t BitWidth) {
return ConstantRange(BitWidth, true);
}
/// Create non-empty constant range with the given bounds. If Lower and
/// Upper are the same, a full range is returned.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
if (Lower == Upper)
return getFull(Lower.getBitWidth());
return ConstantRange(std::move(Lower), std::move(Upper));
}
/// Initialize a range based on a known bits constraint. The IsSigned flag
/// indicates whether the constant range should not wrap in the signed or
/// unsigned domain.
static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
/// Produce the smallest range such that all values that may satisfy the given
/// predicate with any value contained within Other is contained in the
/// returned range. Formally, this returns a superset of
/// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
/// answer is not representable as a ConstantRange, the return value will be a
/// proper superset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the largest range such that all values in the returned range
/// satisfy the given predicate with all values contained within Other.
/// Formally, this returns a subset of
/// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
/// exact answer is not representable as a ConstantRange, the return value
/// will be a proper subset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the exact range such that all values in the returned range satisfy
/// the given predicate with any value contained within Other. Formally, this
/// returns the exact answer when the superset of 'union over all y in Other
/// is exactly same as the subset of intersection over all y in Other.
/// { x : icmp op x y is true}'.
///
/// Example: Pred = ult and Other = i8 3 returns [0, 3)
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
const APInt &Other);
/// Produce the largest range containing all X such that "X BinOp Y" is
/// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
/// be *some* Y in Other for which additional X not contained in the result
/// also do not overflow.
///
/// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
///
/// Examples:
/// typedef OverflowingBinaryOperator OBO;
/// #define MGNR makeGuaranteedNoWrapRegion
/// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
/// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
/// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
/// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
/// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
/// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind);
/// Produce the range that contains X if and only if "X BinOp Other" does
/// not wrap.
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
const APInt &Other,
unsigned NoWrapKind);
/// Returns true if ConstantRange calculations are supported for intrinsic
/// with \p IntrinsicID.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
/// Compute range of intrinsic result for the given operand ranges.
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
ArrayRef<ConstantRange> Ops);
/// Set up \p Pred and \p RHS such that
/// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
/// successful.
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
/// Return the lower value for this range.
const APInt &getLower() const { return Lower; }
/// Return the upper value for this range.
const APInt &getUpper() const { return Upper; }
/// Get the bit width of this ConstantRange.
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
/// Return true if this set contains all of the elements possible
/// for this data-type.
bool isFullSet() const;
/// Return true if this set contains no members.
bool isEmptySet() const;
/// Return true if this set wraps around the unsigned domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, 0) == [X, Max]: Not wrapped.
bool isWrappedSet() const;
/// Return true if the exclusive upper bound wraps around the unsigned
/// domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, 0): Wrapped.
bool isUpperWrapped() const;
/// Return true if this set wraps around the signed domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, SignedMin) == [X, SignedMax]: Not wrapped.
bool isSignWrappedSet() const;
/// Return true if the (exclusive) upper bound wraps around the signed
/// domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, SignedMin): Wrapped.
bool isUpperSignWrapped() const;
/// Return true if the specified value is in the set.
bool contains(const APInt &Val) const;
/// Return true if the other range is a subset of this one.
bool contains(const ConstantRange &CR) const;
/// If this set contains a single element, return it, otherwise return null.
const APInt *getSingleElement() const {
if (Upper == Lower + 1)
return &Lower;
return nullptr;
}
/// If this set contains all but a single element, return it, otherwise return
/// null.
const APInt *getSingleMissingElement() const {
if (Lower == Upper + 1)
return &Upper;
return nullptr;
}
/// Return true if this set contains exactly one member.
bool isSingleElement() const { return getSingleElement() != nullptr; }
/// Compare set size of this range with the range CR.
bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
/// Compare set size of this range with Value.
bool isSizeLargerThan(uint64_t MaxSize) const;
/// Return true if all values in this range are negative.
bool isAllNegative() const;
/// Return true if all values in this range are non-negative.
bool isAllNonNegative() const;
/// Return the largest unsigned value contained in the ConstantRange.
APInt getUnsignedMax() const;
/// Return the smallest unsigned value contained in the ConstantRange.
APInt getUnsignedMin() const;
/// Return the largest signed value contained in the ConstantRange.
APInt getSignedMax() const;
/// Return the smallest signed value contained in the ConstantRange.
APInt getSignedMin() const;
/// Return true if this range is equal to another range.
bool operator==(const ConstantRange &CR) const {
return Lower == CR.Lower && Upper == CR.Upper;
}
bool operator!=(const ConstantRange &CR) const {
return !operator==(CR);
}
/// Compute the maximal number of active bits needed to represent every value
/// in this range.
unsigned getActiveBits() const;
/// Compute the maximal number of bits needed to represent every value
/// in this signed range.
unsigned getMinSignedBits() const;
/// Subtract the specified constant from the endpoints of this constant range.
ConstantRange subtract(const APInt &CI) const;
/// Subtract the specified range from this range (aka relative complement of
/// the sets).
ConstantRange difference(const ConstantRange &CR) const;
/// If represented precisely, the result of some range operations may consist
/// of multiple disjoint ranges. As only a single range may be returned, any
/// range covering these disjoint ranges constitutes a valid result, but some
/// may be more useful than others depending on context. The preferred range
/// type specifies whether a range that is non-wrapping in the unsigned or
/// signed domain, or has the smallest size, is preferred. If a signedness is
/// preferred but all ranges are non-wrapping or all wrapping, then the
/// smallest set size is preferred. If there are multiple smallest sets, any
/// one of them may be returned.
enum PreferredRangeType { Smallest, Unsigned, Signed };
/// Return the range that results from the intersection of this range with
/// another range. If the intersection is disjoint, such that two results
/// are possible, the preferred range is determined by the PreferredRangeType.
ConstantRange intersectWith(const ConstantRange &CR,
PreferredRangeType Type = Smallest) const;
/// Return the range that results from the union of this range
/// with another range. The resultant range is guaranteed to include the
/// elements of both sets, but may contain more. For example, [3, 9) union
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
/// in either set before.
ConstantRange unionWith(const ConstantRange &CR,
PreferredRangeType Type = Smallest) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified cast operator to this range. \p
/// BitWidth is the target bitwidth of the cast. For casts which don't
/// change bitwidth, it must be the same as the source bitwidth. For casts
/// which do change bitwidth, the bitwidth must be consistent with the
/// requested cast and source bitwidth.
ConstantRange castOp(Instruction::CastOps CastOp,
uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// zero extended to BitWidth.
ConstantRange zeroExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// sign extended to BitWidth.
ConstantRange signExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// truncated to the specified type.
ConstantRange truncate(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is zero extended, truncated, or left alone to make it that width.
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is sign extended, truncated, or left alone to make it that width.
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified binary operator to an left hand side
/// of this range and a right hand side of \p Other.
ConstantRange binaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified overflowing binary operator to a
/// left hand side of this range and a right hand side of \p Other given
/// the provided knowledge about lack of wrapping \p NoWrapKind.
ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) const;
/// Return a new range representing the possible values resulting
/// from an addition of a value in this range and a value in \p Other.
ConstantRange add(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an addition with wrap type \p NoWrapKind of a value in this
/// range and a value in \p Other.
/// If the result range is disjoint, the preferred range is determined by the
/// \p PreferredRangeType.
ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
PreferredRangeType RangeType = Smallest) const;
/// Return a new range representing the possible values resulting
/// from a subtraction of a value in this range and a value in \p Other.
ConstantRange sub(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an subtraction with wrap type \p NoWrapKind of a value in this
/// range and a value in \p Other.
/// If the result range is disjoint, the preferred range is determined by the
/// \p PreferredRangeType.
ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
PreferredRangeType RangeType = Smallest) const;
/// Return a new range representing the possible values resulting
/// from a multiplication of a value in this range and a value in \p Other,
/// treating both this and \p Other as unsigned ranges.
ConstantRange multiply(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed maximum of a value in this range and a value in \p Other.
ConstantRange smax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned maximum of a value in this range and a value in \p Other.
ConstantRange umax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed minimum of a value in this range and a value in \p Other.
ConstantRange smin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned minimum of a value in this range and a value in \p Other.
ConstantRange umin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned division of a value in this range and a value in
/// \p Other.
ConstantRange udiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed division of a value in this range and a value in
/// \p Other. Division by zero and division of SignedMin by -1 are considered
/// undefined behavior, in line with IR, and do not contribute towards the
/// result.
ConstantRange sdiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned remainder operation of a value in this range and a
/// value in \p Other.
ConstantRange urem(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed remainder operation of a value in this range and a
/// value in \p Other.
ConstantRange srem(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from
/// a binary-xor of a value in this range by an all-one value,
/// aka bitwise complement operation.
ConstantRange binaryNot() const;
/// Return a new range representing the possible values resulting
/// from a binary-and of a value in this range by a value in \p Other.
ConstantRange binaryAnd(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-or of a value in this range by a value in \p Other.
ConstantRange binaryOr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-xor of a value in this range by a value in \p Other.
ConstantRange binaryXor(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a left shift of a value in this range by a value in \p Other.
/// TODO: This isn't fully implemented yet.
ConstantRange shl(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// logical right shift of a value in this range and a value in \p Other.
ConstantRange lshr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// arithmetic right shift of a value in this range and a value in \p Other.
ConstantRange ashr(const ConstantRange &Other) const;
/// Perform an unsigned saturating addition of two constant ranges.
ConstantRange uadd_sat(const ConstantRange &Other) const;
/// Perform a signed saturating addition of two constant ranges.
ConstantRange sadd_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating subtraction of two constant ranges.
ConstantRange usub_sat(const ConstantRange &Other) const;
/// Perform a signed saturating subtraction of two constant ranges.
ConstantRange ssub_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating multiplication of two constant ranges.
ConstantRange umul_sat(const ConstantRange &Other) const;
/// Perform a signed saturating multiplication of two constant ranges.
ConstantRange smul_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating left shift of this constant range by a
/// value in \p Other.
ConstantRange ushl_sat(const ConstantRange &Other) const;
/// Perform a signed saturating left shift of this constant range by a
/// value in \p Other.
ConstantRange sshl_sat(const ConstantRange &Other) const;
/// Return a new range that is the logical not of the current set.
ConstantRange inverse() const;
/// Calculate absolute value range. If the original range contains signed
/// min, then the resulting range will contain signed min if and only if
/// \p IntMinIsPoison is false.
ConstantRange abs(bool IntMinIsPoison = false) const;
/// Represents whether an operation on the given constant range is known to
/// always or never overflow.
enum class OverflowResult {
/// Always overflows in the direction of signed/unsigned min value.
AlwaysOverflowsLow,
/// Always overflows in the direction of signed/unsigned max value.
AlwaysOverflowsHigh,
/// May or may not overflow.
MayOverflow,
/// Never overflows.
NeverOverflows,
};
/// Return whether unsigned add of the two ranges always/never overflows.
OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
/// Return whether signed add of the two ranges always/never overflows.
OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
/// Return whether unsigned sub of the two ranges always/never overflows.
OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
/// Return whether signed sub of the two ranges always/never overflows.
OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
/// Return whether unsigned mul of the two ranges always/never overflows.
OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
/// Print out the bounds to a stream.
void print(raw_ostream &OS) const;
/// Allow printing from a debugger easily.
void dump() const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
CR.print(OS);
return OS;
}
/// Parse out a conservative ConstantRange from !range metadata.
///
/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
} // end namespace llvm
#endif // LLVM_IR_CONSTANTRANGE_H