1386 lines
48 KiB
C
1386 lines
48 KiB
C
|
//===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Contains generic JIT-linker types.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
|
||
|
#define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
|
||
|
|
||
|
#include "JITLinkMemoryManager.h"
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/DenseSet.h"
|
||
|
#include "llvm/ADT/Optional.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/Triple.h"
|
||
|
#include "llvm/ExecutionEngine/JITSymbol.h"
|
||
|
#include "llvm/Support/Allocator.h"
|
||
|
#include "llvm/Support/Endian.h"
|
||
|
#include "llvm/Support/Error.h"
|
||
|
#include "llvm/Support/FormatVariadic.h"
|
||
|
#include "llvm/Support/MathExtras.h"
|
||
|
#include "llvm/Support/Memory.h"
|
||
|
#include "llvm/Support/MemoryBuffer.h"
|
||
|
|
||
|
#include <map>
|
||
|
#include <string>
|
||
|
#include <system_error>
|
||
|
|
||
|
namespace llvm {
|
||
|
namespace jitlink {
|
||
|
|
||
|
class Symbol;
|
||
|
class Section;
|
||
|
|
||
|
/// Base class for errors originating in JIT linker, e.g. missing relocation
|
||
|
/// support.
|
||
|
class JITLinkError : public ErrorInfo<JITLinkError> {
|
||
|
public:
|
||
|
static char ID;
|
||
|
|
||
|
JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
|
||
|
|
||
|
void log(raw_ostream &OS) const override;
|
||
|
const std::string &getErrorMessage() const { return ErrMsg; }
|
||
|
std::error_code convertToErrorCode() const override;
|
||
|
|
||
|
private:
|
||
|
std::string ErrMsg;
|
||
|
};
|
||
|
|
||
|
/// Represents fixups and constraints in the LinkGraph.
|
||
|
class Edge {
|
||
|
public:
|
||
|
using Kind = uint8_t;
|
||
|
|
||
|
enum GenericEdgeKind : Kind {
|
||
|
Invalid, // Invalid edge value.
|
||
|
FirstKeepAlive, // Keeps target alive. Offset/addend zero.
|
||
|
KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
|
||
|
FirstRelocation // First architecture specific relocation.
|
||
|
};
|
||
|
|
||
|
using OffsetT = uint32_t;
|
||
|
using AddendT = int64_t;
|
||
|
|
||
|
Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
|
||
|
: Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
|
||
|
|
||
|
OffsetT getOffset() const { return Offset; }
|
||
|
void setOffset(OffsetT Offset) { this->Offset = Offset; }
|
||
|
Kind getKind() const { return K; }
|
||
|
void setKind(Kind K) { this->K = K; }
|
||
|
bool isRelocation() const { return K >= FirstRelocation; }
|
||
|
Kind getRelocation() const {
|
||
|
assert(isRelocation() && "Not a relocation edge");
|
||
|
return K - FirstRelocation;
|
||
|
}
|
||
|
bool isKeepAlive() const { return K >= FirstKeepAlive; }
|
||
|
Symbol &getTarget() const { return *Target; }
|
||
|
void setTarget(Symbol &Target) { this->Target = &Target; }
|
||
|
AddendT getAddend() const { return Addend; }
|
||
|
void setAddend(AddendT Addend) { this->Addend = Addend; }
|
||
|
|
||
|
private:
|
||
|
Symbol *Target = nullptr;
|
||
|
OffsetT Offset = 0;
|
||
|
AddendT Addend = 0;
|
||
|
Kind K = 0;
|
||
|
};
|
||
|
|
||
|
/// Returns the string name of the given generic edge kind, or "unknown"
|
||
|
/// otherwise. Useful for debugging.
|
||
|
const char *getGenericEdgeKindName(Edge::Kind K);
|
||
|
|
||
|
/// Base class for Addressable entities (externals, absolutes, blocks).
|
||
|
class Addressable {
|
||
|
friend class LinkGraph;
|
||
|
|
||
|
protected:
|
||
|
Addressable(JITTargetAddress Address, bool IsDefined)
|
||
|
: Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
|
||
|
|
||
|
Addressable(JITTargetAddress Address)
|
||
|
: Address(Address), IsDefined(false), IsAbsolute(true) {
|
||
|
assert(!(IsDefined && IsAbsolute) &&
|
||
|
"Block cannot be both defined and absolute");
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
Addressable(const Addressable &) = delete;
|
||
|
Addressable &operator=(const Addressable &) = default;
|
||
|
Addressable(Addressable &&) = delete;
|
||
|
Addressable &operator=(Addressable &&) = default;
|
||
|
|
||
|
JITTargetAddress getAddress() const { return Address; }
|
||
|
void setAddress(JITTargetAddress Address) { this->Address = Address; }
|
||
|
|
||
|
/// Returns true if this is a defined addressable, in which case you
|
||
|
/// can downcast this to a .
|
||
|
bool isDefined() const { return static_cast<bool>(IsDefined); }
|
||
|
bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
|
||
|
|
||
|
private:
|
||
|
JITTargetAddress Address = 0;
|
||
|
uint64_t IsDefined : 1;
|
||
|
uint64_t IsAbsolute : 1;
|
||
|
};
|
||
|
|
||
|
using SectionOrdinal = unsigned;
|
||
|
|
||
|
/// An Addressable with content and edges.
|
||
|
class Block : public Addressable {
|
||
|
friend class LinkGraph;
|
||
|
|
||
|
private:
|
||
|
/// Create a zero-fill defined addressable.
|
||
|
Block(Section &Parent, JITTargetAddress Size, JITTargetAddress Address,
|
||
|
uint64_t Alignment, uint64_t AlignmentOffset)
|
||
|
: Addressable(Address, true), Parent(Parent), Size(Size) {
|
||
|
assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
|
||
|
assert(AlignmentOffset < Alignment &&
|
||
|
"Alignment offset cannot exceed alignment");
|
||
|
assert(AlignmentOffset <= MaxAlignmentOffset &&
|
||
|
"Alignment offset exceeds maximum");
|
||
|
P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
|
||
|
this->AlignmentOffset = AlignmentOffset;
|
||
|
}
|
||
|
|
||
|
/// Create a defined addressable for the given content.
|
||
|
Block(Section &Parent, StringRef Content, JITTargetAddress Address,
|
||
|
uint64_t Alignment, uint64_t AlignmentOffset)
|
||
|
: Addressable(Address, true), Parent(Parent), Data(Content.data()),
|
||
|
Size(Content.size()) {
|
||
|
assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
|
||
|
assert(AlignmentOffset < Alignment &&
|
||
|
"Alignment offset cannot exceed alignment");
|
||
|
assert(AlignmentOffset <= MaxAlignmentOffset &&
|
||
|
"Alignment offset exceeds maximum");
|
||
|
P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
|
||
|
this->AlignmentOffset = AlignmentOffset;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
using EdgeVector = std::vector<Edge>;
|
||
|
using edge_iterator = EdgeVector::iterator;
|
||
|
using const_edge_iterator = EdgeVector::const_iterator;
|
||
|
|
||
|
Block(const Block &) = delete;
|
||
|
Block &operator=(const Block &) = delete;
|
||
|
Block(Block &&) = delete;
|
||
|
Block &operator=(Block &&) = delete;
|
||
|
|
||
|
/// Return the parent section for this block.
|
||
|
Section &getSection() const { return Parent; }
|
||
|
|
||
|
/// Returns true if this is a zero-fill block.
|
||
|
///
|
||
|
/// If true, getSize is callable but getContent is not (the content is
|
||
|
/// defined to be a sequence of zero bytes of length Size).
|
||
|
bool isZeroFill() const { return !Data; }
|
||
|
|
||
|
/// Returns the size of this defined addressable.
|
||
|
size_t getSize() const { return Size; }
|
||
|
|
||
|
/// Get the content for this block. Block must not be a zero-fill block.
|
||
|
StringRef getContent() const {
|
||
|
assert(Data && "Section does not contain content");
|
||
|
return StringRef(Data, Size);
|
||
|
}
|
||
|
|
||
|
/// Set the content for this block.
|
||
|
/// Caller is responsible for ensuring the underlying bytes are not
|
||
|
/// deallocated while pointed to by this block.
|
||
|
void setContent(StringRef Content) {
|
||
|
Data = Content.data();
|
||
|
Size = Content.size();
|
||
|
}
|
||
|
|
||
|
/// Get the alignment for this content.
|
||
|
uint64_t getAlignment() const { return 1ull << P2Align; }
|
||
|
|
||
|
/// Set the alignment for this content.
|
||
|
void setAlignment(uint64_t Alignment) {
|
||
|
assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
|
||
|
P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
|
||
|
}
|
||
|
|
||
|
/// Get the alignment offset for this content.
|
||
|
uint64_t getAlignmentOffset() const { return AlignmentOffset; }
|
||
|
|
||
|
/// Set the alignment offset for this content.
|
||
|
void setAlignmentOffset(uint64_t AlignmentOffset) {
|
||
|
assert(AlignmentOffset < (1ull << P2Align) &&
|
||
|
"Alignment offset can't exceed alignment");
|
||
|
this->AlignmentOffset = AlignmentOffset;
|
||
|
}
|
||
|
|
||
|
/// Add an edge to this block.
|
||
|
void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
|
||
|
Edge::AddendT Addend) {
|
||
|
Edges.push_back(Edge(K, Offset, Target, Addend));
|
||
|
}
|
||
|
|
||
|
/// Add an edge by copying an existing one. This is typically used when
|
||
|
/// moving edges between blocks.
|
||
|
void addEdge(const Edge &E) { Edges.push_back(E); }
|
||
|
|
||
|
/// Return the list of edges attached to this content.
|
||
|
iterator_range<edge_iterator> edges() {
|
||
|
return make_range(Edges.begin(), Edges.end());
|
||
|
}
|
||
|
|
||
|
/// Returns the list of edges attached to this content.
|
||
|
iterator_range<const_edge_iterator> edges() const {
|
||
|
return make_range(Edges.begin(), Edges.end());
|
||
|
}
|
||
|
|
||
|
/// Return the size of the edges list.
|
||
|
size_t edges_size() const { return Edges.size(); }
|
||
|
|
||
|
/// Returns true if the list of edges is empty.
|
||
|
bool edges_empty() const { return Edges.empty(); }
|
||
|
|
||
|
/// Remove the edge pointed to by the given iterator.
|
||
|
/// Returns an iterator to the new next element.
|
||
|
edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
|
||
|
|
||
|
private:
|
||
|
static constexpr uint64_t MaxAlignmentOffset = (1ULL << 57) - 1;
|
||
|
|
||
|
uint64_t P2Align : 5;
|
||
|
uint64_t AlignmentOffset : 57;
|
||
|
Section &Parent;
|
||
|
const char *Data = nullptr;
|
||
|
size_t Size = 0;
|
||
|
std::vector<Edge> Edges;
|
||
|
};
|
||
|
|
||
|
/// Describes symbol linkage. This can be used to make resolve definition
|
||
|
/// clashes.
|
||
|
enum class Linkage : uint8_t {
|
||
|
Strong,
|
||
|
Weak,
|
||
|
};
|
||
|
|
||
|
/// For errors and debugging output.
|
||
|
const char *getLinkageName(Linkage L);
|
||
|
|
||
|
/// Defines the scope in which this symbol should be visible:
|
||
|
/// Default -- Visible in the public interface of the linkage unit.
|
||
|
/// Hidden -- Visible within the linkage unit, but not exported from it.
|
||
|
/// Local -- Visible only within the LinkGraph.
|
||
|
enum class Scope : uint8_t { Default, Hidden, Local };
|
||
|
|
||
|
/// For debugging output.
|
||
|
const char *getScopeName(Scope S);
|
||
|
|
||
|
raw_ostream &operator<<(raw_ostream &OS, const Block &B);
|
||
|
|
||
|
/// Symbol representation.
|
||
|
///
|
||
|
/// Symbols represent locations within Addressable objects.
|
||
|
/// They can be either Named or Anonymous.
|
||
|
/// Anonymous symbols have neither linkage nor visibility, and must point at
|
||
|
/// ContentBlocks.
|
||
|
/// Named symbols may be in one of four states:
|
||
|
/// - Null: Default initialized. Assignable, but otherwise unusable.
|
||
|
/// - Defined: Has both linkage and visibility and points to a ContentBlock
|
||
|
/// - Common: Has both linkage and visibility, points to a null Addressable.
|
||
|
/// - External: Has neither linkage nor visibility, points to an external
|
||
|
/// Addressable.
|
||
|
///
|
||
|
class Symbol {
|
||
|
friend class LinkGraph;
|
||
|
|
||
|
private:
|
||
|
Symbol(Addressable &Base, JITTargetAddress Offset, StringRef Name,
|
||
|
JITTargetAddress Size, Linkage L, Scope S, bool IsLive,
|
||
|
bool IsCallable)
|
||
|
: Name(Name), Base(&Base), Offset(Offset), Size(Size) {
|
||
|
assert(Offset <= MaxOffset && "Offset out of range");
|
||
|
setLinkage(L);
|
||
|
setScope(S);
|
||
|
setLive(IsLive);
|
||
|
setCallable(IsCallable);
|
||
|
}
|
||
|
|
||
|
static Symbol &constructCommon(void *SymStorage, Block &Base, StringRef Name,
|
||
|
JITTargetAddress Size, Scope S, bool IsLive) {
|
||
|
assert(SymStorage && "Storage cannot be null");
|
||
|
assert(!Name.empty() && "Common symbol name cannot be empty");
|
||
|
assert(Base.isDefined() &&
|
||
|
"Cannot create common symbol from undefined block");
|
||
|
assert(static_cast<Block &>(Base).getSize() == Size &&
|
||
|
"Common symbol size should match underlying block size");
|
||
|
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
|
||
|
new (Sym) Symbol(Base, 0, Name, Size, Linkage::Weak, S, IsLive, false);
|
||
|
return *Sym;
|
||
|
}
|
||
|
|
||
|
static Symbol &constructExternal(void *SymStorage, Addressable &Base,
|
||
|
StringRef Name, JITTargetAddress Size,
|
||
|
Linkage L) {
|
||
|
assert(SymStorage && "Storage cannot be null");
|
||
|
assert(!Base.isDefined() &&
|
||
|
"Cannot create external symbol from defined block");
|
||
|
assert(!Name.empty() && "External symbol name cannot be empty");
|
||
|
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
|
||
|
new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false);
|
||
|
return *Sym;
|
||
|
}
|
||
|
|
||
|
static Symbol &constructAbsolute(void *SymStorage, Addressable &Base,
|
||
|
StringRef Name, JITTargetAddress Size,
|
||
|
Linkage L, Scope S, bool IsLive) {
|
||
|
assert(SymStorage && "Storage cannot be null");
|
||
|
assert(!Base.isDefined() &&
|
||
|
"Cannot create absolute symbol from a defined block");
|
||
|
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
|
||
|
new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
|
||
|
return *Sym;
|
||
|
}
|
||
|
|
||
|
static Symbol &constructAnonDef(void *SymStorage, Block &Base,
|
||
|
JITTargetAddress Offset,
|
||
|
JITTargetAddress Size, bool IsCallable,
|
||
|
bool IsLive) {
|
||
|
assert(SymStorage && "Storage cannot be null");
|
||
|
assert((Offset + Size) <= Base.getSize() &&
|
||
|
"Symbol extends past end of block");
|
||
|
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
|
||
|
new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
|
||
|
Scope::Local, IsLive, IsCallable);
|
||
|
return *Sym;
|
||
|
}
|
||
|
|
||
|
static Symbol &constructNamedDef(void *SymStorage, Block &Base,
|
||
|
JITTargetAddress Offset, StringRef Name,
|
||
|
JITTargetAddress Size, Linkage L, Scope S,
|
||
|
bool IsLive, bool IsCallable) {
|
||
|
assert(SymStorage && "Storage cannot be null");
|
||
|
assert((Offset + Size) <= Base.getSize() &&
|
||
|
"Symbol extends past end of block");
|
||
|
assert(!Name.empty() && "Name cannot be empty");
|
||
|
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
|
||
|
new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
|
||
|
return *Sym;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
/// Create a null Symbol. This allows Symbols to be default initialized for
|
||
|
/// use in containers (e.g. as map values). Null symbols are only useful for
|
||
|
/// assigning to.
|
||
|
Symbol() = default;
|
||
|
|
||
|
// Symbols are not movable or copyable.
|
||
|
Symbol(const Symbol &) = delete;
|
||
|
Symbol &operator=(const Symbol &) = delete;
|
||
|
Symbol(Symbol &&) = delete;
|
||
|
Symbol &operator=(Symbol &&) = delete;
|
||
|
|
||
|
/// Returns true if this symbol has a name.
|
||
|
bool hasName() const { return !Name.empty(); }
|
||
|
|
||
|
/// Returns the name of this symbol (empty if the symbol is anonymous).
|
||
|
StringRef getName() const {
|
||
|
assert((!Name.empty() || getScope() == Scope::Local) &&
|
||
|
"Anonymous symbol has non-local scope");
|
||
|
return Name;
|
||
|
}
|
||
|
|
||
|
/// Rename this symbol. The client is responsible for updating scope and
|
||
|
/// linkage if this name-change requires it.
|
||
|
void setName(StringRef Name) { this->Name = Name; }
|
||
|
|
||
|
/// Returns true if this Symbol has content (potentially) defined within this
|
||
|
/// object file (i.e. is anything but an external or absolute symbol).
|
||
|
bool isDefined() const {
|
||
|
assert(Base && "Attempt to access null symbol");
|
||
|
return Base->isDefined();
|
||
|
}
|
||
|
|
||
|
/// Returns true if this symbol is live (i.e. should be treated as a root for
|
||
|
/// dead stripping).
|
||
|
bool isLive() const {
|
||
|
assert(Base && "Attempting to access null symbol");
|
||
|
return IsLive;
|
||
|
}
|
||
|
|
||
|
/// Set this symbol's live bit.
|
||
|
void setLive(bool IsLive) { this->IsLive = IsLive; }
|
||
|
|
||
|
/// Returns true is this symbol is callable.
|
||
|
bool isCallable() const { return IsCallable; }
|
||
|
|
||
|
/// Set this symbol's callable bit.
|
||
|
void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
|
||
|
|
||
|
/// Returns true if the underlying addressable is an unresolved external.
|
||
|
bool isExternal() const {
|
||
|
assert(Base && "Attempt to access null symbol");
|
||
|
return !Base->isDefined() && !Base->isAbsolute();
|
||
|
}
|
||
|
|
||
|
/// Returns true if the underlying addressable is an absolute symbol.
|
||
|
bool isAbsolute() const {
|
||
|
assert(Base && "Attempt to access null symbol");
|
||
|
return !Base->isDefined() && Base->isAbsolute();
|
||
|
}
|
||
|
|
||
|
/// Return the addressable that this symbol points to.
|
||
|
Addressable &getAddressable() {
|
||
|
assert(Base && "Cannot get underlying addressable for null symbol");
|
||
|
return *Base;
|
||
|
}
|
||
|
|
||
|
/// Return the addressable that thsi symbol points to.
|
||
|
const Addressable &getAddressable() const {
|
||
|
assert(Base && "Cannot get underlying addressable for null symbol");
|
||
|
return *Base;
|
||
|
}
|
||
|
|
||
|
/// Return the Block for this Symbol (Symbol must be defined).
|
||
|
Block &getBlock() {
|
||
|
assert(Base && "Cannot get block for null symbol");
|
||
|
assert(Base->isDefined() && "Not a defined symbol");
|
||
|
return static_cast<Block &>(*Base);
|
||
|
}
|
||
|
|
||
|
/// Return the Block for this Symbol (Symbol must be defined).
|
||
|
const Block &getBlock() const {
|
||
|
assert(Base && "Cannot get block for null symbol");
|
||
|
assert(Base->isDefined() && "Not a defined symbol");
|
||
|
return static_cast<const Block &>(*Base);
|
||
|
}
|
||
|
|
||
|
/// Returns the offset for this symbol within the underlying addressable.
|
||
|
JITTargetAddress getOffset() const { return Offset; }
|
||
|
|
||
|
/// Returns the address of this symbol.
|
||
|
JITTargetAddress getAddress() const { return Base->getAddress() + Offset; }
|
||
|
|
||
|
/// Returns the size of this symbol.
|
||
|
JITTargetAddress getSize() const { return Size; }
|
||
|
|
||
|
/// Returns true if this symbol is backed by a zero-fill block.
|
||
|
/// This method may only be called on defined symbols.
|
||
|
bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
|
||
|
|
||
|
/// Returns the content in the underlying block covered by this symbol.
|
||
|
/// This method may only be called on defined non-zero-fill symbols.
|
||
|
StringRef getSymbolContent() const {
|
||
|
return getBlock().getContent().substr(Offset, Size);
|
||
|
}
|
||
|
|
||
|
/// Get the linkage for this Symbol.
|
||
|
Linkage getLinkage() const { return static_cast<Linkage>(L); }
|
||
|
|
||
|
/// Set the linkage for this Symbol.
|
||
|
void setLinkage(Linkage L) {
|
||
|
assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) &&
|
||
|
"Linkage can only be applied to defined named symbols");
|
||
|
this->L = static_cast<uint8_t>(L);
|
||
|
}
|
||
|
|
||
|
/// Get the visibility for this Symbol.
|
||
|
Scope getScope() const { return static_cast<Scope>(S); }
|
||
|
|
||
|
/// Set the visibility for this Symbol.
|
||
|
void setScope(Scope S) {
|
||
|
assert((!Name.empty() || S == Scope::Local) &&
|
||
|
"Can not set anonymous symbol to non-local scope");
|
||
|
assert((S == Scope::Default || Base->isDefined() || Base->isAbsolute()) &&
|
||
|
"Invalid visibility for symbol type");
|
||
|
this->S = static_cast<uint8_t>(S);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void makeExternal(Addressable &A) {
|
||
|
assert(!A.isDefined() && "Attempting to make external with defined block");
|
||
|
Base = &A;
|
||
|
Offset = 0;
|
||
|
setLinkage(Linkage::Strong);
|
||
|
setScope(Scope::Default);
|
||
|
IsLive = 0;
|
||
|
// note: Size and IsCallable fields left unchanged.
|
||
|
}
|
||
|
|
||
|
void setBlock(Block &B) { Base = &B; }
|
||
|
|
||
|
void setOffset(uint64_t NewOffset) {
|
||
|
assert(NewOffset <= MaxOffset && "Offset out of range");
|
||
|
Offset = NewOffset;
|
||
|
}
|
||
|
|
||
|
static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
|
||
|
|
||
|
// FIXME: A char* or SymbolStringPtr may pack better.
|
||
|
StringRef Name;
|
||
|
Addressable *Base = nullptr;
|
||
|
uint64_t Offset : 59;
|
||
|
uint64_t L : 1;
|
||
|
uint64_t S : 2;
|
||
|
uint64_t IsLive : 1;
|
||
|
uint64_t IsCallable : 1;
|
||
|
JITTargetAddress Size = 0;
|
||
|
};
|
||
|
|
||
|
raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
|
||
|
|
||
|
void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
|
||
|
StringRef EdgeKindName);
|
||
|
|
||
|
/// Represents an object file section.
|
||
|
class Section {
|
||
|
friend class LinkGraph;
|
||
|
|
||
|
private:
|
||
|
Section(StringRef Name, sys::Memory::ProtectionFlags Prot,
|
||
|
SectionOrdinal SecOrdinal)
|
||
|
: Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
|
||
|
|
||
|
using SymbolSet = DenseSet<Symbol *>;
|
||
|
using BlockSet = DenseSet<Block *>;
|
||
|
|
||
|
public:
|
||
|
using symbol_iterator = SymbolSet::iterator;
|
||
|
using const_symbol_iterator = SymbolSet::const_iterator;
|
||
|
|
||
|
using block_iterator = BlockSet::iterator;
|
||
|
using const_block_iterator = BlockSet::const_iterator;
|
||
|
|
||
|
~Section();
|
||
|
|
||
|
/// Returns the name of this section.
|
||
|
StringRef getName() const { return Name; }
|
||
|
|
||
|
/// Returns the protection flags for this section.
|
||
|
sys::Memory::ProtectionFlags getProtectionFlags() const { return Prot; }
|
||
|
|
||
|
/// Returns the ordinal for this section.
|
||
|
SectionOrdinal getOrdinal() const { return SecOrdinal; }
|
||
|
|
||
|
/// Returns an iterator over the blocks defined in this section.
|
||
|
iterator_range<block_iterator> blocks() {
|
||
|
return make_range(Blocks.begin(), Blocks.end());
|
||
|
}
|
||
|
|
||
|
/// Returns an iterator over the blocks defined in this section.
|
||
|
iterator_range<const_block_iterator> blocks() const {
|
||
|
return make_range(Blocks.begin(), Blocks.end());
|
||
|
}
|
||
|
|
||
|
/// Returns an iterator over the symbols defined in this section.
|
||
|
iterator_range<symbol_iterator> symbols() {
|
||
|
return make_range(Symbols.begin(), Symbols.end());
|
||
|
}
|
||
|
|
||
|
/// Returns an iterator over the symbols defined in this section.
|
||
|
iterator_range<const_symbol_iterator> symbols() const {
|
||
|
return make_range(Symbols.begin(), Symbols.end());
|
||
|
}
|
||
|
|
||
|
/// Return the number of symbols in this section.
|
||
|
SymbolSet::size_type symbols_size() { return Symbols.size(); }
|
||
|
|
||
|
private:
|
||
|
void addSymbol(Symbol &Sym) {
|
||
|
assert(!Symbols.count(&Sym) && "Symbol is already in this section");
|
||
|
Symbols.insert(&Sym);
|
||
|
}
|
||
|
|
||
|
void removeSymbol(Symbol &Sym) {
|
||
|
assert(Symbols.count(&Sym) && "symbol is not in this section");
|
||
|
Symbols.erase(&Sym);
|
||
|
}
|
||
|
|
||
|
void addBlock(Block &B) {
|
||
|
assert(!Blocks.count(&B) && "Block is already in this section");
|
||
|
Blocks.insert(&B);
|
||
|
}
|
||
|
|
||
|
void removeBlock(Block &B) {
|
||
|
assert(Blocks.count(&B) && "Block is not in this section");
|
||
|
Blocks.erase(&B);
|
||
|
}
|
||
|
|
||
|
StringRef Name;
|
||
|
sys::Memory::ProtectionFlags Prot;
|
||
|
SectionOrdinal SecOrdinal = 0;
|
||
|
BlockSet Blocks;
|
||
|
SymbolSet Symbols;
|
||
|
};
|
||
|
|
||
|
/// Represents a section address range via a pair of Block pointers
|
||
|
/// to the first and last Blocks in the section.
|
||
|
class SectionRange {
|
||
|
public:
|
||
|
SectionRange() = default;
|
||
|
SectionRange(const Section &Sec) {
|
||
|
if (llvm::empty(Sec.blocks()))
|
||
|
return;
|
||
|
First = Last = *Sec.blocks().begin();
|
||
|
for (auto *B : Sec.blocks()) {
|
||
|
if (B->getAddress() < First->getAddress())
|
||
|
First = B;
|
||
|
if (B->getAddress() > Last->getAddress())
|
||
|
Last = B;
|
||
|
}
|
||
|
}
|
||
|
Block *getFirstBlock() const {
|
||
|
assert((!Last || First) && "First can not be null if end is non-null");
|
||
|
return First;
|
||
|
}
|
||
|
Block *getLastBlock() const {
|
||
|
assert((First || !Last) && "Last can not be null if start is non-null");
|
||
|
return Last;
|
||
|
}
|
||
|
bool isEmpty() const {
|
||
|
assert((First || !Last) && "Last can not be null if start is non-null");
|
||
|
return !First;
|
||
|
}
|
||
|
JITTargetAddress getStart() const {
|
||
|
return First ? First->getAddress() : 0;
|
||
|
}
|
||
|
JITTargetAddress getEnd() const {
|
||
|
return Last ? Last->getAddress() + Last->getSize() : 0;
|
||
|
}
|
||
|
uint64_t getSize() const { return getEnd() - getStart(); }
|
||
|
|
||
|
private:
|
||
|
Block *First = nullptr;
|
||
|
Block *Last = nullptr;
|
||
|
};
|
||
|
|
||
|
class LinkGraph {
|
||
|
private:
|
||
|
using SectionList = std::vector<std::unique_ptr<Section>>;
|
||
|
using ExternalSymbolSet = DenseSet<Symbol *>;
|
||
|
using BlockSet = DenseSet<Block *>;
|
||
|
|
||
|
template <typename... ArgTs>
|
||
|
Addressable &createAddressable(ArgTs &&... Args) {
|
||
|
Addressable *A =
|
||
|
reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
|
||
|
new (A) Addressable(std::forward<ArgTs>(Args)...);
|
||
|
return *A;
|
||
|
}
|
||
|
|
||
|
void destroyAddressable(Addressable &A) {
|
||
|
A.~Addressable();
|
||
|
Allocator.Deallocate(&A);
|
||
|
}
|
||
|
|
||
|
template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
|
||
|
Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
|
||
|
new (B) Block(std::forward<ArgTs>(Args)...);
|
||
|
B->getSection().addBlock(*B);
|
||
|
return *B;
|
||
|
}
|
||
|
|
||
|
void destroyBlock(Block &B) {
|
||
|
B.~Block();
|
||
|
Allocator.Deallocate(&B);
|
||
|
}
|
||
|
|
||
|
void destroySymbol(Symbol &S) {
|
||
|
S.~Symbol();
|
||
|
Allocator.Deallocate(&S);
|
||
|
}
|
||
|
|
||
|
static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
|
||
|
return S.blocks();
|
||
|
}
|
||
|
|
||
|
static iterator_range<Section::const_block_iterator>
|
||
|
getSectionConstBlocks(Section &S) {
|
||
|
return S.blocks();
|
||
|
}
|
||
|
|
||
|
static iterator_range<Section::symbol_iterator>
|
||
|
getSectionSymbols(Section &S) {
|
||
|
return S.symbols();
|
||
|
}
|
||
|
|
||
|
static iterator_range<Section::const_symbol_iterator>
|
||
|
getSectionConstSymbols(Section &S) {
|
||
|
return S.symbols();
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
using external_symbol_iterator = ExternalSymbolSet::iterator;
|
||
|
|
||
|
using section_iterator = pointee_iterator<SectionList::iterator>;
|
||
|
using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
|
||
|
|
||
|
template <typename OuterItrT, typename InnerItrT, typename T,
|
||
|
iterator_range<InnerItrT> getInnerRange(
|
||
|
typename OuterItrT::reference)>
|
||
|
class nested_collection_iterator
|
||
|
: public iterator_facade_base<
|
||
|
nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
|
||
|
std::forward_iterator_tag, T> {
|
||
|
public:
|
||
|
nested_collection_iterator() = default;
|
||
|
|
||
|
nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
|
||
|
: OuterI(OuterI), OuterE(OuterE),
|
||
|
InnerI(getInnerBegin(OuterI, OuterE)) {
|
||
|
moveToNonEmptyInnerOrEnd();
|
||
|
}
|
||
|
|
||
|
bool operator==(const nested_collection_iterator &RHS) const {
|
||
|
return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
|
||
|
}
|
||
|
|
||
|
T operator*() const {
|
||
|
assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
|
||
|
return *InnerI;
|
||
|
}
|
||
|
|
||
|
nested_collection_iterator operator++() {
|
||
|
++InnerI;
|
||
|
moveToNonEmptyInnerOrEnd();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
|
||
|
return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
|
||
|
}
|
||
|
|
||
|
void moveToNonEmptyInnerOrEnd() {
|
||
|
while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
|
||
|
++OuterI;
|
||
|
InnerI = getInnerBegin(OuterI, OuterE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
OuterItrT OuterI, OuterE;
|
||
|
InnerItrT InnerI;
|
||
|
};
|
||
|
|
||
|
using defined_symbol_iterator =
|
||
|
nested_collection_iterator<const_section_iterator,
|
||
|
Section::symbol_iterator, Symbol *,
|
||
|
getSectionSymbols>;
|
||
|
|
||
|
using const_defined_symbol_iterator =
|
||
|
nested_collection_iterator<const_section_iterator,
|
||
|
Section::const_symbol_iterator, const Symbol *,
|
||
|
getSectionConstSymbols>;
|
||
|
|
||
|
using block_iterator = nested_collection_iterator<const_section_iterator,
|
||
|
Section::block_iterator,
|
||
|
Block *, getSectionBlocks>;
|
||
|
|
||
|
using const_block_iterator =
|
||
|
nested_collection_iterator<const_section_iterator,
|
||
|
Section::const_block_iterator, const Block *,
|
||
|
getSectionConstBlocks>;
|
||
|
|
||
|
LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize,
|
||
|
support::endianness Endianness)
|
||
|
: Name(std::move(Name)), TT(TT), PointerSize(PointerSize),
|
||
|
Endianness(Endianness) {}
|
||
|
|
||
|
/// Returns the name of this graph (usually the name of the original
|
||
|
/// underlying MemoryBuffer).
|
||
|
const std::string &getName() { return Name; }
|
||
|
|
||
|
/// Returns the target triple for this Graph.
|
||
|
const Triple &getTargetTriple() const { return TT; }
|
||
|
|
||
|
/// Returns the pointer size for use in this graph.
|
||
|
unsigned getPointerSize() const { return PointerSize; }
|
||
|
|
||
|
/// Returns the endianness of content in this graph.
|
||
|
support::endianness getEndianness() const { return Endianness; }
|
||
|
|
||
|
/// Allocate a copy of the given string using the LinkGraph's allocator.
|
||
|
/// This can be useful when renaming symbols or adding new content to the
|
||
|
/// graph.
|
||
|
StringRef allocateString(StringRef Source) {
|
||
|
auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
|
||
|
llvm::copy(Source, AllocatedBuffer);
|
||
|
return StringRef(AllocatedBuffer, Source.size());
|
||
|
}
|
||
|
|
||
|
/// Allocate a copy of the given string using the LinkGraph's allocator.
|
||
|
/// This can be useful when renaming symbols or adding new content to the
|
||
|
/// graph.
|
||
|
///
|
||
|
/// Note: This Twine-based overload requires an extra string copy and an
|
||
|
/// extra heap allocation for large strings. The StringRef overload should
|
||
|
/// be preferred where possible.
|
||
|
StringRef allocateString(Twine Source) {
|
||
|
SmallString<256> TmpBuffer;
|
||
|
auto SourceStr = Source.toStringRef(TmpBuffer);
|
||
|
auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
|
||
|
llvm::copy(SourceStr, AllocatedBuffer);
|
||
|
return StringRef(AllocatedBuffer, SourceStr.size());
|
||
|
}
|
||
|
|
||
|
/// Create a section with the given name, protection flags, and alignment.
|
||
|
Section &createSection(StringRef Name, sys::Memory::ProtectionFlags Prot) {
|
||
|
std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
|
||
|
Sections.push_back(std::move(Sec));
|
||
|
return *Sections.back();
|
||
|
}
|
||
|
|
||
|
/// Create a content block.
|
||
|
Block &createContentBlock(Section &Parent, StringRef Content,
|
||
|
uint64_t Address, uint64_t Alignment,
|
||
|
uint64_t AlignmentOffset) {
|
||
|
return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
|
||
|
}
|
||
|
|
||
|
/// Create a zero-fill block.
|
||
|
Block &createZeroFillBlock(Section &Parent, uint64_t Size, uint64_t Address,
|
||
|
uint64_t Alignment, uint64_t AlignmentOffset) {
|
||
|
return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
|
||
|
}
|
||
|
|
||
|
/// Cache type for the splitBlock function.
|
||
|
using SplitBlockCache = Optional<SmallVector<Symbol *, 8>>;
|
||
|
|
||
|
/// Splits block B at the given index which must be greater than zero.
|
||
|
/// If SplitIndex == B.getSize() then this function is a no-op and returns B.
|
||
|
/// If SplitIndex < B.getSize() then this function returns a new block
|
||
|
/// covering the range [ 0, SplitIndex ), and B is modified to cover the range
|
||
|
/// [ SplitIndex, B.size() ).
|
||
|
///
|
||
|
/// The optional Cache parameter can be used to speed up repeated calls to
|
||
|
/// splitBlock for a single block. If the value is None the cache will be
|
||
|
/// treated as uninitialized and splitBlock will populate it. Otherwise it
|
||
|
/// is assumed to contain the list of Symbols pointing at B, sorted in
|
||
|
/// descending order of offset.
|
||
|
///
|
||
|
/// Notes:
|
||
|
///
|
||
|
/// 1. The newly introduced block will have a new ordinal which will be
|
||
|
/// higher than any other ordinals in the section. Clients are responsible
|
||
|
/// for re-assigning block ordinals to restore a compatible order if
|
||
|
/// needed.
|
||
|
///
|
||
|
/// 2. The cache is not automatically updated if new symbols are introduced
|
||
|
/// between calls to splitBlock. Any newly introduced symbols may be
|
||
|
/// added to the cache manually (descending offset order must be
|
||
|
/// preserved), or the cache can be set to None and rebuilt by
|
||
|
/// splitBlock on the next call.
|
||
|
Block &splitBlock(Block &B, size_t SplitIndex,
|
||
|
SplitBlockCache *Cache = nullptr);
|
||
|
|
||
|
/// Add an external symbol.
|
||
|
/// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
|
||
|
/// size is not known, you should substitute '0'.
|
||
|
/// For external symbols Linkage determines whether the symbol must be
|
||
|
/// present during lookup: Externals with strong linkage must be found or
|
||
|
/// an error will be emitted. Externals with weak linkage are permitted to
|
||
|
/// be undefined, in which case they are assigned a value of 0.
|
||
|
Symbol &addExternalSymbol(StringRef Name, uint64_t Size, Linkage L) {
|
||
|
auto &Sym =
|
||
|
Symbol::constructExternal(Allocator.Allocate<Symbol>(),
|
||
|
createAddressable(0, false), Name, Size, L);
|
||
|
ExternalSymbols.insert(&Sym);
|
||
|
return Sym;
|
||
|
}
|
||
|
|
||
|
/// Add an absolute symbol.
|
||
|
Symbol &addAbsoluteSymbol(StringRef Name, JITTargetAddress Address,
|
||
|
uint64_t Size, Linkage L, Scope S, bool IsLive) {
|
||
|
auto &Sym = Symbol::constructAbsolute(Allocator.Allocate<Symbol>(),
|
||
|
createAddressable(Address), Name,
|
||
|
Size, L, S, IsLive);
|
||
|
AbsoluteSymbols.insert(&Sym);
|
||
|
return Sym;
|
||
|
}
|
||
|
|
||
|
/// Convenience method for adding a weak zero-fill symbol.
|
||
|
Symbol &addCommonSymbol(StringRef Name, Scope S, Section &Section,
|
||
|
JITTargetAddress Address, uint64_t Size,
|
||
|
uint64_t Alignment, bool IsLive) {
|
||
|
auto &Sym = Symbol::constructCommon(
|
||
|
Allocator.Allocate<Symbol>(),
|
||
|
createBlock(Section, Size, Address, Alignment, 0), Name, Size, S,
|
||
|
IsLive);
|
||
|
Section.addSymbol(Sym);
|
||
|
return Sym;
|
||
|
}
|
||
|
|
||
|
/// Add an anonymous symbol.
|
||
|
Symbol &addAnonymousSymbol(Block &Content, JITTargetAddress Offset,
|
||
|
JITTargetAddress Size, bool IsCallable,
|
||
|
bool IsLive) {
|
||
|
auto &Sym = Symbol::constructAnonDef(Allocator.Allocate<Symbol>(), Content,
|
||
|
Offset, Size, IsCallable, IsLive);
|
||
|
Content.getSection().addSymbol(Sym);
|
||
|
return Sym;
|
||
|
}
|
||
|
|
||
|
/// Add a named symbol.
|
||
|
Symbol &addDefinedSymbol(Block &Content, JITTargetAddress Offset,
|
||
|
StringRef Name, JITTargetAddress Size, Linkage L,
|
||
|
Scope S, bool IsCallable, bool IsLive) {
|
||
|
auto &Sym =
|
||
|
Symbol::constructNamedDef(Allocator.Allocate<Symbol>(), Content, Offset,
|
||
|
Name, Size, L, S, IsLive, IsCallable);
|
||
|
Content.getSection().addSymbol(Sym);
|
||
|
return Sym;
|
||
|
}
|
||
|
|
||
|
iterator_range<section_iterator> sections() {
|
||
|
return make_range(section_iterator(Sections.begin()),
|
||
|
section_iterator(Sections.end()));
|
||
|
}
|
||
|
|
||
|
/// Returns the section with the given name if it exists, otherwise returns
|
||
|
/// null.
|
||
|
Section *findSectionByName(StringRef Name) {
|
||
|
for (auto &S : sections())
|
||
|
if (S.getName() == Name)
|
||
|
return &S;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
iterator_range<block_iterator> blocks() {
|
||
|
return make_range(block_iterator(Sections.begin(), Sections.end()),
|
||
|
block_iterator(Sections.end(), Sections.end()));
|
||
|
}
|
||
|
|
||
|
iterator_range<const_block_iterator> blocks() const {
|
||
|
return make_range(const_block_iterator(Sections.begin(), Sections.end()),
|
||
|
const_block_iterator(Sections.end(), Sections.end()));
|
||
|
}
|
||
|
|
||
|
iterator_range<external_symbol_iterator> external_symbols() {
|
||
|
return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
|
||
|
}
|
||
|
|
||
|
iterator_range<external_symbol_iterator> absolute_symbols() {
|
||
|
return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
|
||
|
}
|
||
|
|
||
|
iterator_range<defined_symbol_iterator> defined_symbols() {
|
||
|
return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
|
||
|
defined_symbol_iterator(Sections.end(), Sections.end()));
|
||
|
}
|
||
|
|
||
|
iterator_range<const_defined_symbol_iterator> defined_symbols() const {
|
||
|
return make_range(
|
||
|
const_defined_symbol_iterator(Sections.begin(), Sections.end()),
|
||
|
const_defined_symbol_iterator(Sections.end(), Sections.end()));
|
||
|
}
|
||
|
|
||
|
/// Turn a defined symbol into an external one.
|
||
|
void makeExternal(Symbol &Sym) {
|
||
|
if (Sym.getAddressable().isAbsolute()) {
|
||
|
assert(AbsoluteSymbols.count(&Sym) &&
|
||
|
"Sym is not in the absolute symbols set");
|
||
|
AbsoluteSymbols.erase(&Sym);
|
||
|
} else {
|
||
|
assert(Sym.isDefined() && "Sym is not a defined symbol");
|
||
|
Section &Sec = Sym.getBlock().getSection();
|
||
|
Sec.removeSymbol(Sym);
|
||
|
}
|
||
|
Sym.makeExternal(createAddressable(0, false));
|
||
|
ExternalSymbols.insert(&Sym);
|
||
|
}
|
||
|
|
||
|
/// Removes an external symbol. Also removes the underlying Addressable.
|
||
|
void removeExternalSymbol(Symbol &Sym) {
|
||
|
assert(!Sym.isDefined() && !Sym.isAbsolute() &&
|
||
|
"Sym is not an external symbol");
|
||
|
assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
|
||
|
ExternalSymbols.erase(&Sym);
|
||
|
Addressable &Base = *Sym.Base;
|
||
|
destroySymbol(Sym);
|
||
|
destroyAddressable(Base);
|
||
|
}
|
||
|
|
||
|
/// Remove an absolute symbol. Also removes the underlying Addressable.
|
||
|
void removeAbsoluteSymbol(Symbol &Sym) {
|
||
|
assert(!Sym.isDefined() && Sym.isAbsolute() &&
|
||
|
"Sym is not an absolute symbol");
|
||
|
assert(AbsoluteSymbols.count(&Sym) &&
|
||
|
"Symbol is not in the absolute symbols set");
|
||
|
AbsoluteSymbols.erase(&Sym);
|
||
|
Addressable &Base = *Sym.Base;
|
||
|
destroySymbol(Sym);
|
||
|
destroyAddressable(Base);
|
||
|
}
|
||
|
|
||
|
/// Removes defined symbols. Does not remove the underlying block.
|
||
|
void removeDefinedSymbol(Symbol &Sym) {
|
||
|
assert(Sym.isDefined() && "Sym is not a defined symbol");
|
||
|
Sym.getBlock().getSection().removeSymbol(Sym);
|
||
|
destroySymbol(Sym);
|
||
|
}
|
||
|
|
||
|
/// Remove a block.
|
||
|
void removeBlock(Block &B) {
|
||
|
assert(llvm::none_of(B.getSection().symbols(),
|
||
|
[&](const Symbol *Sym) {
|
||
|
return &Sym->getBlock() == &B;
|
||
|
}) &&
|
||
|
"Block still has symbols attached");
|
||
|
B.getSection().removeBlock(B);
|
||
|
destroyBlock(B);
|
||
|
}
|
||
|
|
||
|
/// Dump the graph.
|
||
|
///
|
||
|
/// If supplied, the EdgeKindToName function will be used to name edge
|
||
|
/// kinds in the debug output. Otherwise raw edge kind numbers will be
|
||
|
/// displayed.
|
||
|
void dump(raw_ostream &OS,
|
||
|
std::function<StringRef(Edge::Kind)> EdegKindToName =
|
||
|
std::function<StringRef(Edge::Kind)>());
|
||
|
|
||
|
private:
|
||
|
// Put the BumpPtrAllocator first so that we don't free any of the underlying
|
||
|
// memory until the Symbol/Addressable destructors have been run.
|
||
|
BumpPtrAllocator Allocator;
|
||
|
|
||
|
std::string Name;
|
||
|
Triple TT;
|
||
|
unsigned PointerSize;
|
||
|
support::endianness Endianness;
|
||
|
SectionList Sections;
|
||
|
ExternalSymbolSet ExternalSymbols;
|
||
|
ExternalSymbolSet AbsoluteSymbols;
|
||
|
};
|
||
|
|
||
|
/// Enables easy lookup of blocks by addresses.
|
||
|
class BlockAddressMap {
|
||
|
public:
|
||
|
using AddrToBlockMap = std::map<JITTargetAddress, Block *>;
|
||
|
using const_iterator = AddrToBlockMap::const_iterator;
|
||
|
|
||
|
/// A block predicate that always adds all blocks.
|
||
|
static bool includeAllBlocks(const Block &B) { return true; }
|
||
|
|
||
|
/// A block predicate that always includes blocks with non-null addresses.
|
||
|
static bool includeNonNull(const Block &B) { return B.getAddress(); }
|
||
|
|
||
|
BlockAddressMap() = default;
|
||
|
|
||
|
/// Add a block to the map. Returns an error if the block overlaps with any
|
||
|
/// existing block.
|
||
|
template <typename PredFn = decltype(includeAllBlocks)>
|
||
|
Error addBlock(Block &B, PredFn Pred = includeAllBlocks) {
|
||
|
if (!Pred(B))
|
||
|
return Error::success();
|
||
|
|
||
|
auto I = AddrToBlock.upper_bound(B.getAddress());
|
||
|
|
||
|
// If we're not at the end of the map, check for overlap with the next
|
||
|
// element.
|
||
|
if (I != AddrToBlock.end()) {
|
||
|
if (B.getAddress() + B.getSize() > I->second->getAddress())
|
||
|
return overlapError(B, *I->second);
|
||
|
}
|
||
|
|
||
|
// If we're not at the start of the map, check for overlap with the previous
|
||
|
// element.
|
||
|
if (I != AddrToBlock.begin()) {
|
||
|
auto &PrevBlock = *std::prev(I)->second;
|
||
|
if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
|
||
|
return overlapError(B, PrevBlock);
|
||
|
}
|
||
|
|
||
|
AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
/// Add a block to the map without checking for overlap with existing blocks.
|
||
|
/// The client is responsible for ensuring that the block added does not
|
||
|
/// overlap with any existing block.
|
||
|
void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
|
||
|
|
||
|
/// Add a range of blocks to the map. Returns an error if any block in the
|
||
|
/// range overlaps with any other block in the range, or with any existing
|
||
|
/// block in the map.
|
||
|
template <typename BlockPtrRange,
|
||
|
typename PredFn = decltype(includeAllBlocks)>
|
||
|
Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
|
||
|
for (auto *B : Blocks)
|
||
|
if (auto Err = addBlock(*B, Pred))
|
||
|
return Err;
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
/// Add a range of blocks to the map without checking for overlap with
|
||
|
/// existing blocks. The client is responsible for ensuring that the block
|
||
|
/// added does not overlap with any existing block.
|
||
|
template <typename BlockPtrRange>
|
||
|
void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
|
||
|
for (auto *B : Blocks)
|
||
|
addBlockWithoutChecking(*B);
|
||
|
}
|
||
|
|
||
|
/// Iterates over (Address, Block*) pairs in ascending order of address.
|
||
|
const_iterator begin() const { return AddrToBlock.begin(); }
|
||
|
const_iterator end() const { return AddrToBlock.end(); }
|
||
|
|
||
|
/// Returns the block starting at the given address, or nullptr if no such
|
||
|
/// block exists.
|
||
|
Block *getBlockAt(JITTargetAddress Addr) const {
|
||
|
auto I = AddrToBlock.find(Addr);
|
||
|
if (I == AddrToBlock.end())
|
||
|
return nullptr;
|
||
|
return I->second;
|
||
|
}
|
||
|
|
||
|
/// Returns the block covering the given address, or nullptr if no such block
|
||
|
/// exists.
|
||
|
Block *getBlockCovering(JITTargetAddress Addr) const {
|
||
|
auto I = AddrToBlock.upper_bound(Addr);
|
||
|
if (I == AddrToBlock.begin())
|
||
|
return nullptr;
|
||
|
auto *B = std::prev(I)->second;
|
||
|
if (Addr < B->getAddress() + B->getSize())
|
||
|
return B;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
Error overlapError(Block &NewBlock, Block &ExistingBlock) {
|
||
|
auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
|
||
|
auto ExistingBlockEnd =
|
||
|
ExistingBlock.getAddress() + ExistingBlock.getSize();
|
||
|
return make_error<JITLinkError>(
|
||
|
"Block at " +
|
||
|
formatv("{0:x16} -- {1:x16}", NewBlock.getAddress(), NewBlockEnd) +
|
||
|
" overlaps " +
|
||
|
formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress(),
|
||
|
ExistingBlockEnd));
|
||
|
}
|
||
|
|
||
|
AddrToBlockMap AddrToBlock;
|
||
|
};
|
||
|
|
||
|
/// A map of addresses to Symbols.
|
||
|
class SymbolAddressMap {
|
||
|
public:
|
||
|
using SymbolVector = SmallVector<Symbol *, 1>;
|
||
|
|
||
|
/// Add a symbol to the SymbolAddressMap.
|
||
|
void addSymbol(Symbol &Sym) {
|
||
|
AddrToSymbols[Sym.getAddress()].push_back(&Sym);
|
||
|
}
|
||
|
|
||
|
/// Add all symbols in a given range to the SymbolAddressMap.
|
||
|
template <typename SymbolPtrCollection>
|
||
|
void addSymbols(SymbolPtrCollection &&Symbols) {
|
||
|
for (auto *Sym : Symbols)
|
||
|
addSymbol(*Sym);
|
||
|
}
|
||
|
|
||
|
/// Returns the list of symbols that start at the given address, or nullptr if
|
||
|
/// no such symbols exist.
|
||
|
const SymbolVector *getSymbolsAt(JITTargetAddress Addr) const {
|
||
|
auto I = AddrToSymbols.find(Addr);
|
||
|
if (I == AddrToSymbols.end())
|
||
|
return nullptr;
|
||
|
return &I->second;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
std::map<JITTargetAddress, SymbolVector> AddrToSymbols;
|
||
|
};
|
||
|
|
||
|
/// A function for mutating LinkGraphs.
|
||
|
using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
|
||
|
|
||
|
/// A list of LinkGraph passes.
|
||
|
using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
|
||
|
|
||
|
/// An LinkGraph pass configuration, consisting of a list of pre-prune,
|
||
|
/// post-prune, and post-fixup passes.
|
||
|
struct PassConfiguration {
|
||
|
|
||
|
/// Pre-prune passes.
|
||
|
///
|
||
|
/// These passes are called on the graph after it is built, and before any
|
||
|
/// symbols have been pruned. Graph nodes still have their original vmaddrs.
|
||
|
///
|
||
|
/// Notable use cases: Marking symbols live or should-discard.
|
||
|
LinkGraphPassList PrePrunePasses;
|
||
|
|
||
|
/// Post-prune passes.
|
||
|
///
|
||
|
/// These passes are called on the graph after dead stripping, but before
|
||
|
/// memory is allocated or nodes assigned their final addresses.
|
||
|
///
|
||
|
/// Notable use cases: Building GOT, stub, and TLV symbols.
|
||
|
LinkGraphPassList PostPrunePasses;
|
||
|
|
||
|
/// Post-allocation passes.
|
||
|
///
|
||
|
/// These passes are called on the graph after memory has been allocated and
|
||
|
/// defined nodes have been assigned their final addresses, but before the
|
||
|
/// context has been notified of these addresses. At this point externals
|
||
|
/// have not been resolved, and symbol content has not yet been copied into
|
||
|
/// working memory.
|
||
|
///
|
||
|
/// Notable use cases: Setting up data structures associated with addresses
|
||
|
/// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
|
||
|
/// JIT runtime) -- using a PostAllocationPass for this ensures that the
|
||
|
/// data structures are in-place before any query for resolved symbols
|
||
|
/// can complete.
|
||
|
LinkGraphPassList PostAllocationPasses;
|
||
|
|
||
|
/// Pre-fixup passes.
|
||
|
///
|
||
|
/// These passes are called on the graph after memory has been allocated,
|
||
|
/// content copied into working memory, and all nodes (including externals)
|
||
|
/// have been assigned their final addresses, but before any fixups have been
|
||
|
/// applied.
|
||
|
///
|
||
|
/// Notable use cases: Late link-time optimizations like GOT and stub
|
||
|
/// elimination.
|
||
|
LinkGraphPassList PreFixupPasses;
|
||
|
|
||
|
/// Post-fixup passes.
|
||
|
///
|
||
|
/// These passes are called on the graph after block contents has been copied
|
||
|
/// to working memory, and fixups applied. Graph nodes have been updated to
|
||
|
/// their final target vmaddrs.
|
||
|
///
|
||
|
/// Notable use cases: Testing and validation.
|
||
|
LinkGraphPassList PostFixupPasses;
|
||
|
};
|
||
|
|
||
|
/// Flags for symbol lookup.
|
||
|
///
|
||
|
/// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
|
||
|
/// the two types once we have an OrcSupport library.
|
||
|
enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol };
|
||
|
|
||
|
raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF);
|
||
|
|
||
|
/// A map of symbol names to resolved addresses.
|
||
|
using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
|
||
|
|
||
|
/// A function object to call with a resolved symbol map (See AsyncLookupResult)
|
||
|
/// or an error if resolution failed.
|
||
|
class JITLinkAsyncLookupContinuation {
|
||
|
public:
|
||
|
virtual ~JITLinkAsyncLookupContinuation() {}
|
||
|
virtual void run(Expected<AsyncLookupResult> LR) = 0;
|
||
|
|
||
|
private:
|
||
|
virtual void anchor();
|
||
|
};
|
||
|
|
||
|
/// Create a lookup continuation from a function object.
|
||
|
template <typename Continuation>
|
||
|
std::unique_ptr<JITLinkAsyncLookupContinuation>
|
||
|
createLookupContinuation(Continuation Cont) {
|
||
|
|
||
|
class Impl final : public JITLinkAsyncLookupContinuation {
|
||
|
public:
|
||
|
Impl(Continuation C) : C(std::move(C)) {}
|
||
|
void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
|
||
|
|
||
|
private:
|
||
|
Continuation C;
|
||
|
};
|
||
|
|
||
|
return std::make_unique<Impl>(std::move(Cont));
|
||
|
}
|
||
|
|
||
|
/// Holds context for a single jitLink invocation.
|
||
|
class JITLinkContext {
|
||
|
public:
|
||
|
using LookupMap = DenseMap<StringRef, SymbolLookupFlags>;
|
||
|
|
||
|
/// Create a JITLinkContext.
|
||
|
JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
|
||
|
|
||
|
/// Destroy a JITLinkContext.
|
||
|
virtual ~JITLinkContext();
|
||
|
|
||
|
/// Return the JITLinkDylib that this link is targeting, if any.
|
||
|
const JITLinkDylib *getJITLinkDylib() const { return JD; }
|
||
|
|
||
|
/// Return the MemoryManager to be used for this link.
|
||
|
virtual JITLinkMemoryManager &getMemoryManager() = 0;
|
||
|
|
||
|
/// Notify this context that linking failed.
|
||
|
/// Called by JITLink if linking cannot be completed.
|
||
|
virtual void notifyFailed(Error Err) = 0;
|
||
|
|
||
|
/// Called by JITLink to resolve external symbols. This method is passed a
|
||
|
/// lookup continutation which it must call with a result to continue the
|
||
|
/// linking process.
|
||
|
virtual void lookup(const LookupMap &Symbols,
|
||
|
std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
|
||
|
|
||
|
/// Called by JITLink once all defined symbols in the graph have been assigned
|
||
|
/// their final memory locations in the target process. At this point the
|
||
|
/// LinkGraph can be inspected to build a symbol table, however the block
|
||
|
/// content will not generally have been copied to the target location yet.
|
||
|
///
|
||
|
/// If the client detects an error in the LinkGraph state (e.g. unexpected or
|
||
|
/// missing symbols) they may return an error here. The error will be
|
||
|
/// propagated to notifyFailed and the linker will bail out.
|
||
|
virtual Error notifyResolved(LinkGraph &G) = 0;
|
||
|
|
||
|
/// Called by JITLink to notify the context that the object has been
|
||
|
/// finalized (i.e. emitted to memory and memory permissions set). If all of
|
||
|
/// this objects dependencies have also been finalized then the code is ready
|
||
|
/// to run.
|
||
|
virtual void
|
||
|
notifyFinalized(std::unique_ptr<JITLinkMemoryManager::Allocation> A) = 0;
|
||
|
|
||
|
/// Called by JITLink prior to linking to determine whether default passes for
|
||
|
/// the target should be added. The default implementation returns true.
|
||
|
/// If subclasses override this method to return false for any target then
|
||
|
/// they are required to fully configure the pass pipeline for that target.
|
||
|
virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
|
||
|
|
||
|
/// Returns the mark-live pass to be used for this link. If no pass is
|
||
|
/// returned (the default) then the target-specific linker implementation will
|
||
|
/// choose a conservative default (usually marking all symbols live).
|
||
|
/// This function is only called if shouldAddDefaultTargetPasses returns true,
|
||
|
/// otherwise the JITContext is responsible for adding a mark-live pass in
|
||
|
/// modifyPassConfig.
|
||
|
virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
|
||
|
|
||
|
/// Called by JITLink to modify the pass pipeline prior to linking.
|
||
|
/// The default version performs no modification.
|
||
|
virtual Error modifyPassConfig(const Triple &TT, PassConfiguration &Config);
|
||
|
|
||
|
private:
|
||
|
const JITLinkDylib *JD = nullptr;
|
||
|
};
|
||
|
|
||
|
/// Marks all symbols in a graph live. This can be used as a default,
|
||
|
/// conservative mark-live implementation.
|
||
|
Error markAllSymbolsLive(LinkGraph &G);
|
||
|
|
||
|
/// Create a LinkGraph from the given object buffer.
|
||
|
///
|
||
|
/// Note: The graph does not take ownership of the underlying buffer, nor copy
|
||
|
/// its contents. The caller is responsible for ensuring that the object buffer
|
||
|
/// outlives the graph.
|
||
|
Expected<std::unique_ptr<LinkGraph>>
|
||
|
createLinkGraphFromObject(MemoryBufferRef ObjectBuffer);
|
||
|
|
||
|
/// Link the given graph.
|
||
|
void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
|
||
|
|
||
|
} // end namespace jitlink
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
|