675 lines
22 KiB
C
675 lines
22 KiB
C
|
//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// PBQP Graph class.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
|
||
|
#define LLVM_CODEGEN_PBQP_GRAPH_H
|
||
|
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include <algorithm>
|
||
|
#include <cassert>
|
||
|
#include <iterator>
|
||
|
#include <limits>
|
||
|
#include <vector>
|
||
|
|
||
|
namespace llvm {
|
||
|
namespace PBQP {
|
||
|
|
||
|
class GraphBase {
|
||
|
public:
|
||
|
using NodeId = unsigned;
|
||
|
using EdgeId = unsigned;
|
||
|
|
||
|
/// Returns a value representing an invalid (non-existent) node.
|
||
|
static NodeId invalidNodeId() {
|
||
|
return std::numeric_limits<NodeId>::max();
|
||
|
}
|
||
|
|
||
|
/// Returns a value representing an invalid (non-existent) edge.
|
||
|
static EdgeId invalidEdgeId() {
|
||
|
return std::numeric_limits<EdgeId>::max();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// PBQP Graph class.
|
||
|
/// Instances of this class describe PBQP problems.
|
||
|
///
|
||
|
template <typename SolverT>
|
||
|
class Graph : public GraphBase {
|
||
|
private:
|
||
|
using CostAllocator = typename SolverT::CostAllocator;
|
||
|
|
||
|
public:
|
||
|
using RawVector = typename SolverT::RawVector;
|
||
|
using RawMatrix = typename SolverT::RawMatrix;
|
||
|
using Vector = typename SolverT::Vector;
|
||
|
using Matrix = typename SolverT::Matrix;
|
||
|
using VectorPtr = typename CostAllocator::VectorPtr;
|
||
|
using MatrixPtr = typename CostAllocator::MatrixPtr;
|
||
|
using NodeMetadata = typename SolverT::NodeMetadata;
|
||
|
using EdgeMetadata = typename SolverT::EdgeMetadata;
|
||
|
using GraphMetadata = typename SolverT::GraphMetadata;
|
||
|
|
||
|
private:
|
||
|
class NodeEntry {
|
||
|
public:
|
||
|
using AdjEdgeList = std::vector<EdgeId>;
|
||
|
using AdjEdgeIdx = AdjEdgeList::size_type;
|
||
|
using AdjEdgeItr = AdjEdgeList::const_iterator;
|
||
|
|
||
|
NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
|
||
|
|
||
|
static AdjEdgeIdx getInvalidAdjEdgeIdx() {
|
||
|
return std::numeric_limits<AdjEdgeIdx>::max();
|
||
|
}
|
||
|
|
||
|
AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
|
||
|
AdjEdgeIdx Idx = AdjEdgeIds.size();
|
||
|
AdjEdgeIds.push_back(EId);
|
||
|
return Idx;
|
||
|
}
|
||
|
|
||
|
void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
|
||
|
// Swap-and-pop for fast removal.
|
||
|
// 1) Update the adj index of the edge currently at back().
|
||
|
// 2) Move last Edge down to Idx.
|
||
|
// 3) pop_back()
|
||
|
// If Idx == size() - 1 then the setAdjEdgeIdx and swap are
|
||
|
// redundant, but both operations are cheap.
|
||
|
G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
|
||
|
AdjEdgeIds[Idx] = AdjEdgeIds.back();
|
||
|
AdjEdgeIds.pop_back();
|
||
|
}
|
||
|
|
||
|
const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
|
||
|
|
||
|
VectorPtr Costs;
|
||
|
NodeMetadata Metadata;
|
||
|
|
||
|
private:
|
||
|
AdjEdgeList AdjEdgeIds;
|
||
|
};
|
||
|
|
||
|
class EdgeEntry {
|
||
|
public:
|
||
|
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
|
||
|
: Costs(std::move(Costs)) {
|
||
|
NIds[0] = N1Id;
|
||
|
NIds[1] = N2Id;
|
||
|
ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
|
||
|
ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
|
||
|
}
|
||
|
|
||
|
void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
|
||
|
assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
|
||
|
"Edge already connected to NIds[NIdx].");
|
||
|
NodeEntry &N = G.getNode(NIds[NIdx]);
|
||
|
ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
|
||
|
}
|
||
|
|
||
|
void connect(Graph &G, EdgeId ThisEdgeId) {
|
||
|
connectToN(G, ThisEdgeId, 0);
|
||
|
connectToN(G, ThisEdgeId, 1);
|
||
|
}
|
||
|
|
||
|
void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
|
||
|
if (NId == NIds[0])
|
||
|
ThisEdgeAdjIdxs[0] = NewIdx;
|
||
|
else {
|
||
|
assert(NId == NIds[1] && "Edge not connected to NId");
|
||
|
ThisEdgeAdjIdxs[1] = NewIdx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void disconnectFromN(Graph &G, unsigned NIdx) {
|
||
|
assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
|
||
|
"Edge not connected to NIds[NIdx].");
|
||
|
NodeEntry &N = G.getNode(NIds[NIdx]);
|
||
|
N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
|
||
|
ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
|
||
|
}
|
||
|
|
||
|
void disconnectFrom(Graph &G, NodeId NId) {
|
||
|
if (NId == NIds[0])
|
||
|
disconnectFromN(G, 0);
|
||
|
else {
|
||
|
assert(NId == NIds[1] && "Edge does not connect NId");
|
||
|
disconnectFromN(G, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
NodeId getN1Id() const { return NIds[0]; }
|
||
|
NodeId getN2Id() const { return NIds[1]; }
|
||
|
|
||
|
MatrixPtr Costs;
|
||
|
EdgeMetadata Metadata;
|
||
|
|
||
|
private:
|
||
|
NodeId NIds[2];
|
||
|
typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
|
||
|
};
|
||
|
|
||
|
// ----- MEMBERS -----
|
||
|
|
||
|
GraphMetadata Metadata;
|
||
|
CostAllocator CostAlloc;
|
||
|
SolverT *Solver = nullptr;
|
||
|
|
||
|
using NodeVector = std::vector<NodeEntry>;
|
||
|
using FreeNodeVector = std::vector<NodeId>;
|
||
|
NodeVector Nodes;
|
||
|
FreeNodeVector FreeNodeIds;
|
||
|
|
||
|
using EdgeVector = std::vector<EdgeEntry>;
|
||
|
using FreeEdgeVector = std::vector<EdgeId>;
|
||
|
EdgeVector Edges;
|
||
|
FreeEdgeVector FreeEdgeIds;
|
||
|
|
||
|
Graph(const Graph &Other) {}
|
||
|
|
||
|
// ----- INTERNAL METHODS -----
|
||
|
|
||
|
NodeEntry &getNode(NodeId NId) {
|
||
|
assert(NId < Nodes.size() && "Out of bound NodeId");
|
||
|
return Nodes[NId];
|
||
|
}
|
||
|
const NodeEntry &getNode(NodeId NId) const {
|
||
|
assert(NId < Nodes.size() && "Out of bound NodeId");
|
||
|
return Nodes[NId];
|
||
|
}
|
||
|
|
||
|
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
|
||
|
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
|
||
|
|
||
|
NodeId addConstructedNode(NodeEntry N) {
|
||
|
NodeId NId = 0;
|
||
|
if (!FreeNodeIds.empty()) {
|
||
|
NId = FreeNodeIds.back();
|
||
|
FreeNodeIds.pop_back();
|
||
|
Nodes[NId] = std::move(N);
|
||
|
} else {
|
||
|
NId = Nodes.size();
|
||
|
Nodes.push_back(std::move(N));
|
||
|
}
|
||
|
return NId;
|
||
|
}
|
||
|
|
||
|
EdgeId addConstructedEdge(EdgeEntry E) {
|
||
|
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
|
||
|
"Attempt to add duplicate edge.");
|
||
|
EdgeId EId = 0;
|
||
|
if (!FreeEdgeIds.empty()) {
|
||
|
EId = FreeEdgeIds.back();
|
||
|
FreeEdgeIds.pop_back();
|
||
|
Edges[EId] = std::move(E);
|
||
|
} else {
|
||
|
EId = Edges.size();
|
||
|
Edges.push_back(std::move(E));
|
||
|
}
|
||
|
|
||
|
EdgeEntry &NE = getEdge(EId);
|
||
|
|
||
|
// Add the edge to the adjacency sets of its nodes.
|
||
|
NE.connect(*this, EId);
|
||
|
return EId;
|
||
|
}
|
||
|
|
||
|
void operator=(const Graph &Other) {}
|
||
|
|
||
|
public:
|
||
|
using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
|
||
|
|
||
|
class NodeItr {
|
||
|
public:
|
||
|
using iterator_category = std::forward_iterator_tag;
|
||
|
using value_type = NodeId;
|
||
|
using difference_type = int;
|
||
|
using pointer = NodeId *;
|
||
|
using reference = NodeId &;
|
||
|
|
||
|
NodeItr(NodeId CurNId, const Graph &G)
|
||
|
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
|
||
|
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
|
||
|
}
|
||
|
|
||
|
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
|
||
|
bool operator!=(const NodeItr &O) const { return !(*this == O); }
|
||
|
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
|
||
|
NodeId operator*() const { return CurNId; }
|
||
|
|
||
|
private:
|
||
|
NodeId findNextInUse(NodeId NId) const {
|
||
|
while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
|
||
|
++NId;
|
||
|
}
|
||
|
return NId;
|
||
|
}
|
||
|
|
||
|
NodeId CurNId, EndNId;
|
||
|
const FreeNodeVector &FreeNodeIds;
|
||
|
};
|
||
|
|
||
|
class EdgeItr {
|
||
|
public:
|
||
|
EdgeItr(EdgeId CurEId, const Graph &G)
|
||
|
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
|
||
|
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
|
||
|
}
|
||
|
|
||
|
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
|
||
|
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
|
||
|
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
|
||
|
EdgeId operator*() const { return CurEId; }
|
||
|
|
||
|
private:
|
||
|
EdgeId findNextInUse(EdgeId EId) const {
|
||
|
while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
|
||
|
++EId;
|
||
|
}
|
||
|
return EId;
|
||
|
}
|
||
|
|
||
|
EdgeId CurEId, EndEId;
|
||
|
const FreeEdgeVector &FreeEdgeIds;
|
||
|
};
|
||
|
|
||
|
class NodeIdSet {
|
||
|
public:
|
||
|
NodeIdSet(const Graph &G) : G(G) {}
|
||
|
|
||
|
NodeItr begin() const { return NodeItr(0, G); }
|
||
|
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
|
||
|
|
||
|
bool empty() const { return G.Nodes.empty(); }
|
||
|
|
||
|
typename NodeVector::size_type size() const {
|
||
|
return G.Nodes.size() - G.FreeNodeIds.size();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Graph& G;
|
||
|
};
|
||
|
|
||
|
class EdgeIdSet {
|
||
|
public:
|
||
|
EdgeIdSet(const Graph &G) : G(G) {}
|
||
|
|
||
|
EdgeItr begin() const { return EdgeItr(0, G); }
|
||
|
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
|
||
|
|
||
|
bool empty() const { return G.Edges.empty(); }
|
||
|
|
||
|
typename NodeVector::size_type size() const {
|
||
|
return G.Edges.size() - G.FreeEdgeIds.size();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Graph& G;
|
||
|
};
|
||
|
|
||
|
class AdjEdgeIdSet {
|
||
|
public:
|
||
|
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
|
||
|
|
||
|
typename NodeEntry::AdjEdgeItr begin() const {
|
||
|
return NE.getAdjEdgeIds().begin();
|
||
|
}
|
||
|
|
||
|
typename NodeEntry::AdjEdgeItr end() const {
|
||
|
return NE.getAdjEdgeIds().end();
|
||
|
}
|
||
|
|
||
|
bool empty() const { return NE.getAdjEdgeIds().empty(); }
|
||
|
|
||
|
typename NodeEntry::AdjEdgeList::size_type size() const {
|
||
|
return NE.getAdjEdgeIds().size();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const NodeEntry &NE;
|
||
|
};
|
||
|
|
||
|
/// Construct an empty PBQP graph.
|
||
|
Graph() = default;
|
||
|
|
||
|
/// Construct an empty PBQP graph with the given graph metadata.
|
||
|
Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
|
||
|
|
||
|
/// Get a reference to the graph metadata.
|
||
|
GraphMetadata& getMetadata() { return Metadata; }
|
||
|
|
||
|
/// Get a const-reference to the graph metadata.
|
||
|
const GraphMetadata& getMetadata() const { return Metadata; }
|
||
|
|
||
|
/// Lock this graph to the given solver instance in preparation
|
||
|
/// for running the solver. This method will call solver.handleAddNode for
|
||
|
/// each node in the graph, and handleAddEdge for each edge, to give the
|
||
|
/// solver an opportunity to set up any requried metadata.
|
||
|
void setSolver(SolverT &S) {
|
||
|
assert(!Solver && "Solver already set. Call unsetSolver().");
|
||
|
Solver = &S;
|
||
|
for (auto NId : nodeIds())
|
||
|
Solver->handleAddNode(NId);
|
||
|
for (auto EId : edgeIds())
|
||
|
Solver->handleAddEdge(EId);
|
||
|
}
|
||
|
|
||
|
/// Release from solver instance.
|
||
|
void unsetSolver() {
|
||
|
assert(Solver && "Solver not set.");
|
||
|
Solver = nullptr;
|
||
|
}
|
||
|
|
||
|
/// Add a node with the given costs.
|
||
|
/// @param Costs Cost vector for the new node.
|
||
|
/// @return Node iterator for the added node.
|
||
|
template <typename OtherVectorT>
|
||
|
NodeId addNode(OtherVectorT Costs) {
|
||
|
// Get cost vector from the problem domain
|
||
|
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
|
||
|
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
|
||
|
if (Solver)
|
||
|
Solver->handleAddNode(NId);
|
||
|
return NId;
|
||
|
}
|
||
|
|
||
|
/// Add a node bypassing the cost allocator.
|
||
|
/// @param Costs Cost vector ptr for the new node (must be convertible to
|
||
|
/// VectorPtr).
|
||
|
/// @return Node iterator for the added node.
|
||
|
///
|
||
|
/// This method allows for fast addition of a node whose costs don't need
|
||
|
/// to be passed through the cost allocator. The most common use case for
|
||
|
/// this is when duplicating costs from an existing node (when using a
|
||
|
/// pooling allocator). These have already been uniqued, so we can avoid
|
||
|
/// re-constructing and re-uniquing them by attaching them directly to the
|
||
|
/// new node.
|
||
|
template <typename OtherVectorPtrT>
|
||
|
NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
|
||
|
NodeId NId = addConstructedNode(NodeEntry(Costs));
|
||
|
if (Solver)
|
||
|
Solver->handleAddNode(NId);
|
||
|
return NId;
|
||
|
}
|
||
|
|
||
|
/// Add an edge between the given nodes with the given costs.
|
||
|
/// @param N1Id First node.
|
||
|
/// @param N2Id Second node.
|
||
|
/// @param Costs Cost matrix for new edge.
|
||
|
/// @return Edge iterator for the added edge.
|
||
|
template <typename OtherVectorT>
|
||
|
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
|
||
|
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
|
||
|
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
|
||
|
"Matrix dimensions mismatch.");
|
||
|
// Get cost matrix from the problem domain.
|
||
|
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
|
||
|
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
|
||
|
if (Solver)
|
||
|
Solver->handleAddEdge(EId);
|
||
|
return EId;
|
||
|
}
|
||
|
|
||
|
/// Add an edge bypassing the cost allocator.
|
||
|
/// @param N1Id First node.
|
||
|
/// @param N2Id Second node.
|
||
|
/// @param Costs Cost matrix for new edge.
|
||
|
/// @return Edge iterator for the added edge.
|
||
|
///
|
||
|
/// This method allows for fast addition of an edge whose costs don't need
|
||
|
/// to be passed through the cost allocator. The most common use case for
|
||
|
/// this is when duplicating costs from an existing edge (when using a
|
||
|
/// pooling allocator). These have already been uniqued, so we can avoid
|
||
|
/// re-constructing and re-uniquing them by attaching them directly to the
|
||
|
/// new edge.
|
||
|
template <typename OtherMatrixPtrT>
|
||
|
NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
|
||
|
OtherMatrixPtrT Costs) {
|
||
|
assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
|
||
|
getNodeCosts(N2Id).getLength() == Costs->getCols() &&
|
||
|
"Matrix dimensions mismatch.");
|
||
|
// Get cost matrix from the problem domain.
|
||
|
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
|
||
|
if (Solver)
|
||
|
Solver->handleAddEdge(EId);
|
||
|
return EId;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the graph is empty.
|
||
|
bool empty() const { return NodeIdSet(*this).empty(); }
|
||
|
|
||
|
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
|
||
|
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
|
||
|
|
||
|
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
|
||
|
|
||
|
/// Get the number of nodes in the graph.
|
||
|
/// @return Number of nodes in the graph.
|
||
|
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
|
||
|
|
||
|
/// Get the number of edges in the graph.
|
||
|
/// @return Number of edges in the graph.
|
||
|
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
|
||
|
|
||
|
/// Set a node's cost vector.
|
||
|
/// @param NId Node to update.
|
||
|
/// @param Costs New costs to set.
|
||
|
template <typename OtherVectorT>
|
||
|
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
|
||
|
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
|
||
|
if (Solver)
|
||
|
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
|
||
|
getNode(NId).Costs = AllocatedCosts;
|
||
|
}
|
||
|
|
||
|
/// Get a VectorPtr to a node's cost vector. Rarely useful - use
|
||
|
/// getNodeCosts where possible.
|
||
|
/// @param NId Node id.
|
||
|
/// @return VectorPtr to node cost vector.
|
||
|
///
|
||
|
/// This method is primarily useful for duplicating costs quickly by
|
||
|
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
|
||
|
/// getNodeCosts when dealing with node cost values.
|
||
|
const VectorPtr& getNodeCostsPtr(NodeId NId) const {
|
||
|
return getNode(NId).Costs;
|
||
|
}
|
||
|
|
||
|
/// Get a node's cost vector.
|
||
|
/// @param NId Node id.
|
||
|
/// @return Node cost vector.
|
||
|
const Vector& getNodeCosts(NodeId NId) const {
|
||
|
return *getNodeCostsPtr(NId);
|
||
|
}
|
||
|
|
||
|
NodeMetadata& getNodeMetadata(NodeId NId) {
|
||
|
return getNode(NId).Metadata;
|
||
|
}
|
||
|
|
||
|
const NodeMetadata& getNodeMetadata(NodeId NId) const {
|
||
|
return getNode(NId).Metadata;
|
||
|
}
|
||
|
|
||
|
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
|
||
|
return getNode(NId).getAdjEdgeIds().size();
|
||
|
}
|
||
|
|
||
|
/// Update an edge's cost matrix.
|
||
|
/// @param EId Edge id.
|
||
|
/// @param Costs New cost matrix.
|
||
|
template <typename OtherMatrixT>
|
||
|
void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
|
||
|
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
|
||
|
if (Solver)
|
||
|
Solver->handleUpdateCosts(EId, *AllocatedCosts);
|
||
|
getEdge(EId).Costs = AllocatedCosts;
|
||
|
}
|
||
|
|
||
|
/// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
|
||
|
/// getEdgeCosts where possible.
|
||
|
/// @param EId Edge id.
|
||
|
/// @return MatrixPtr to edge cost matrix.
|
||
|
///
|
||
|
/// This method is primarily useful for duplicating costs quickly by
|
||
|
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
|
||
|
/// getEdgeCosts when dealing with edge cost values.
|
||
|
const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
|
||
|
return getEdge(EId).Costs;
|
||
|
}
|
||
|
|
||
|
/// Get an edge's cost matrix.
|
||
|
/// @param EId Edge id.
|
||
|
/// @return Edge cost matrix.
|
||
|
const Matrix& getEdgeCosts(EdgeId EId) const {
|
||
|
return *getEdge(EId).Costs;
|
||
|
}
|
||
|
|
||
|
EdgeMetadata& getEdgeMetadata(EdgeId EId) {
|
||
|
return getEdge(EId).Metadata;
|
||
|
}
|
||
|
|
||
|
const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
|
||
|
return getEdge(EId).Metadata;
|
||
|
}
|
||
|
|
||
|
/// Get the first node connected to this edge.
|
||
|
/// @param EId Edge id.
|
||
|
/// @return The first node connected to the given edge.
|
||
|
NodeId getEdgeNode1Id(EdgeId EId) const {
|
||
|
return getEdge(EId).getN1Id();
|
||
|
}
|
||
|
|
||
|
/// Get the second node connected to this edge.
|
||
|
/// @param EId Edge id.
|
||
|
/// @return The second node connected to the given edge.
|
||
|
NodeId getEdgeNode2Id(EdgeId EId) const {
|
||
|
return getEdge(EId).getN2Id();
|
||
|
}
|
||
|
|
||
|
/// Get the "other" node connected to this edge.
|
||
|
/// @param EId Edge id.
|
||
|
/// @param NId Node id for the "given" node.
|
||
|
/// @return The iterator for the "other" node connected to this edge.
|
||
|
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
|
||
|
EdgeEntry &E = getEdge(EId);
|
||
|
if (E.getN1Id() == NId) {
|
||
|
return E.getN2Id();
|
||
|
} // else
|
||
|
return E.getN1Id();
|
||
|
}
|
||
|
|
||
|
/// Get the edge connecting two nodes.
|
||
|
/// @param N1Id First node id.
|
||
|
/// @param N2Id Second node id.
|
||
|
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
|
||
|
/// otherwise returns an invalid edge id.
|
||
|
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
|
||
|
for (auto AEId : adjEdgeIds(N1Id)) {
|
||
|
if ((getEdgeNode1Id(AEId) == N2Id) ||
|
||
|
(getEdgeNode2Id(AEId) == N2Id)) {
|
||
|
return AEId;
|
||
|
}
|
||
|
}
|
||
|
return invalidEdgeId();
|
||
|
}
|
||
|
|
||
|
/// Remove a node from the graph.
|
||
|
/// @param NId Node id.
|
||
|
void removeNode(NodeId NId) {
|
||
|
if (Solver)
|
||
|
Solver->handleRemoveNode(NId);
|
||
|
NodeEntry &N = getNode(NId);
|
||
|
// TODO: Can this be for-each'd?
|
||
|
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
|
||
|
AEEnd = N.adjEdgesEnd();
|
||
|
AEItr != AEEnd;) {
|
||
|
EdgeId EId = *AEItr;
|
||
|
++AEItr;
|
||
|
removeEdge(EId);
|
||
|
}
|
||
|
FreeNodeIds.push_back(NId);
|
||
|
}
|
||
|
|
||
|
/// Disconnect an edge from the given node.
|
||
|
///
|
||
|
/// Removes the given edge from the adjacency list of the given node.
|
||
|
/// This operation leaves the edge in an 'asymmetric' state: It will no
|
||
|
/// longer appear in an iteration over the given node's (NId's) edges, but
|
||
|
/// will appear in an iteration over the 'other', unnamed node's edges.
|
||
|
///
|
||
|
/// This does not correspond to any normal graph operation, but exists to
|
||
|
/// support efficient PBQP graph-reduction based solvers. It is used to
|
||
|
/// 'effectively' remove the unnamed node from the graph while the solver
|
||
|
/// is performing the reduction. The solver will later call reconnectNode
|
||
|
/// to restore the edge in the named node's adjacency list.
|
||
|
///
|
||
|
/// Since the degree of a node is the number of connected edges,
|
||
|
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
|
||
|
/// drop by 1.
|
||
|
///
|
||
|
/// A disconnected edge WILL still appear in an iteration over the graph
|
||
|
/// edges.
|
||
|
///
|
||
|
/// A disconnected edge should not be removed from the graph, it should be
|
||
|
/// reconnected first.
|
||
|
///
|
||
|
/// A disconnected edge can be reconnected by calling the reconnectEdge
|
||
|
/// method.
|
||
|
void disconnectEdge(EdgeId EId, NodeId NId) {
|
||
|
if (Solver)
|
||
|
Solver->handleDisconnectEdge(EId, NId);
|
||
|
|
||
|
EdgeEntry &E = getEdge(EId);
|
||
|
E.disconnectFrom(*this, NId);
|
||
|
}
|
||
|
|
||
|
/// Convenience method to disconnect all neighbours from the given
|
||
|
/// node.
|
||
|
void disconnectAllNeighborsFromNode(NodeId NId) {
|
||
|
for (auto AEId : adjEdgeIds(NId))
|
||
|
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
|
||
|
}
|
||
|
|
||
|
/// Re-attach an edge to its nodes.
|
||
|
///
|
||
|
/// Adds an edge that had been previously disconnected back into the
|
||
|
/// adjacency set of the nodes that the edge connects.
|
||
|
void reconnectEdge(EdgeId EId, NodeId NId) {
|
||
|
EdgeEntry &E = getEdge(EId);
|
||
|
E.connectTo(*this, EId, NId);
|
||
|
if (Solver)
|
||
|
Solver->handleReconnectEdge(EId, NId);
|
||
|
}
|
||
|
|
||
|
/// Remove an edge from the graph.
|
||
|
/// @param EId Edge id.
|
||
|
void removeEdge(EdgeId EId) {
|
||
|
if (Solver)
|
||
|
Solver->handleRemoveEdge(EId);
|
||
|
EdgeEntry &E = getEdge(EId);
|
||
|
E.disconnect();
|
||
|
FreeEdgeIds.push_back(EId);
|
||
|
Edges[EId].invalidate();
|
||
|
}
|
||
|
|
||
|
/// Remove all nodes and edges from the graph.
|
||
|
void clear() {
|
||
|
Nodes.clear();
|
||
|
FreeNodeIds.clear();
|
||
|
Edges.clear();
|
||
|
FreeEdgeIds.clear();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end namespace PBQP
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
|