llvm-for-llvmta/include/llvm/CodeGen/PBQP/Graph.h

675 lines
22 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// PBQP Graph class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
#define LLVM_CODEGEN_PBQP_GRAPH_H
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <vector>
namespace llvm {
namespace PBQP {
class GraphBase {
public:
using NodeId = unsigned;
using EdgeId = unsigned;
/// Returns a value representing an invalid (non-existent) node.
static NodeId invalidNodeId() {
return std::numeric_limits<NodeId>::max();
}
/// Returns a value representing an invalid (non-existent) edge.
static EdgeId invalidEdgeId() {
return std::numeric_limits<EdgeId>::max();
}
};
/// PBQP Graph class.
/// Instances of this class describe PBQP problems.
///
template <typename SolverT>
class Graph : public GraphBase {
private:
using CostAllocator = typename SolverT::CostAllocator;
public:
using RawVector = typename SolverT::RawVector;
using RawMatrix = typename SolverT::RawMatrix;
using Vector = typename SolverT::Vector;
using Matrix = typename SolverT::Matrix;
using VectorPtr = typename CostAllocator::VectorPtr;
using MatrixPtr = typename CostAllocator::MatrixPtr;
using NodeMetadata = typename SolverT::NodeMetadata;
using EdgeMetadata = typename SolverT::EdgeMetadata;
using GraphMetadata = typename SolverT::GraphMetadata;
private:
class NodeEntry {
public:
using AdjEdgeList = std::vector<EdgeId>;
using AdjEdgeIdx = AdjEdgeList::size_type;
using AdjEdgeItr = AdjEdgeList::const_iterator;
NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
static AdjEdgeIdx getInvalidAdjEdgeIdx() {
return std::numeric_limits<AdjEdgeIdx>::max();
}
AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
AdjEdgeIdx Idx = AdjEdgeIds.size();
AdjEdgeIds.push_back(EId);
return Idx;
}
void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
// Swap-and-pop for fast removal.
// 1) Update the adj index of the edge currently at back().
// 2) Move last Edge down to Idx.
// 3) pop_back()
// If Idx == size() - 1 then the setAdjEdgeIdx and swap are
// redundant, but both operations are cheap.
G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
AdjEdgeIds[Idx] = AdjEdgeIds.back();
AdjEdgeIds.pop_back();
}
const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
VectorPtr Costs;
NodeMetadata Metadata;
private:
AdjEdgeList AdjEdgeIds;
};
class EdgeEntry {
public:
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
: Costs(std::move(Costs)) {
NIds[0] = N1Id;
NIds[1] = N2Id;
ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
}
void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge already connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
}
void connect(Graph &G, EdgeId ThisEdgeId) {
connectToN(G, ThisEdgeId, 0);
connectToN(G, ThisEdgeId, 1);
}
void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
if (NId == NIds[0])
ThisEdgeAdjIdxs[0] = NewIdx;
else {
assert(NId == NIds[1] && "Edge not connected to NId");
ThisEdgeAdjIdxs[1] = NewIdx;
}
}
void disconnectFromN(Graph &G, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge not connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
}
void disconnectFrom(Graph &G, NodeId NId) {
if (NId == NIds[0])
disconnectFromN(G, 0);
else {
assert(NId == NIds[1] && "Edge does not connect NId");
disconnectFromN(G, 1);
}
}
NodeId getN1Id() const { return NIds[0]; }
NodeId getN2Id() const { return NIds[1]; }
MatrixPtr Costs;
EdgeMetadata Metadata;
private:
NodeId NIds[2];
typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
};
// ----- MEMBERS -----
GraphMetadata Metadata;
CostAllocator CostAlloc;
SolverT *Solver = nullptr;
using NodeVector = std::vector<NodeEntry>;
using FreeNodeVector = std::vector<NodeId>;
NodeVector Nodes;
FreeNodeVector FreeNodeIds;
using EdgeVector = std::vector<EdgeEntry>;
using FreeEdgeVector = std::vector<EdgeId>;
EdgeVector Edges;
FreeEdgeVector FreeEdgeIds;
Graph(const Graph &Other) {}
// ----- INTERNAL METHODS -----
NodeEntry &getNode(NodeId NId) {
assert(NId < Nodes.size() && "Out of bound NodeId");
return Nodes[NId];
}
const NodeEntry &getNode(NodeId NId) const {
assert(NId < Nodes.size() && "Out of bound NodeId");
return Nodes[NId];
}
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
NodeId addConstructedNode(NodeEntry N) {
NodeId NId = 0;
if (!FreeNodeIds.empty()) {
NId = FreeNodeIds.back();
FreeNodeIds.pop_back();
Nodes[NId] = std::move(N);
} else {
NId = Nodes.size();
Nodes.push_back(std::move(N));
}
return NId;
}
EdgeId addConstructedEdge(EdgeEntry E) {
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
EdgeId EId = 0;
if (!FreeEdgeIds.empty()) {
EId = FreeEdgeIds.back();
FreeEdgeIds.pop_back();
Edges[EId] = std::move(E);
} else {
EId = Edges.size();
Edges.push_back(std::move(E));
}
EdgeEntry &NE = getEdge(EId);
// Add the edge to the adjacency sets of its nodes.
NE.connect(*this, EId);
return EId;
}
void operator=(const Graph &Other) {}
public:
using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
class NodeItr {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = NodeId;
using difference_type = int;
using pointer = NodeId *;
using reference = NodeId &;
NodeItr(NodeId CurNId, const Graph &G)
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
}
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
bool operator!=(const NodeItr &O) const { return !(*this == O); }
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
NodeId operator*() const { return CurNId; }
private:
NodeId findNextInUse(NodeId NId) const {
while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
++NId;
}
return NId;
}
NodeId CurNId, EndNId;
const FreeNodeVector &FreeNodeIds;
};
class EdgeItr {
public:
EdgeItr(EdgeId CurEId, const Graph &G)
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
}
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
EdgeId operator*() const { return CurEId; }
private:
EdgeId findNextInUse(EdgeId EId) const {
while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
++EId;
}
return EId;
}
EdgeId CurEId, EndEId;
const FreeEdgeVector &FreeEdgeIds;
};
class NodeIdSet {
public:
NodeIdSet(const Graph &G) : G(G) {}
NodeItr begin() const { return NodeItr(0, G); }
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
bool empty() const { return G.Nodes.empty(); }
typename NodeVector::size_type size() const {
return G.Nodes.size() - G.FreeNodeIds.size();
}
private:
const Graph& G;
};
class EdgeIdSet {
public:
EdgeIdSet(const Graph &G) : G(G) {}
EdgeItr begin() const { return EdgeItr(0, G); }
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
bool empty() const { return G.Edges.empty(); }
typename NodeVector::size_type size() const {
return G.Edges.size() - G.FreeEdgeIds.size();
}
private:
const Graph& G;
};
class AdjEdgeIdSet {
public:
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
typename NodeEntry::AdjEdgeItr begin() const {
return NE.getAdjEdgeIds().begin();
}
typename NodeEntry::AdjEdgeItr end() const {
return NE.getAdjEdgeIds().end();
}
bool empty() const { return NE.getAdjEdgeIds().empty(); }
typename NodeEntry::AdjEdgeList::size_type size() const {
return NE.getAdjEdgeIds().size();
}
private:
const NodeEntry &NE;
};
/// Construct an empty PBQP graph.
Graph() = default;
/// Construct an empty PBQP graph with the given graph metadata.
Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
/// Get a reference to the graph metadata.
GraphMetadata& getMetadata() { return Metadata; }
/// Get a const-reference to the graph metadata.
const GraphMetadata& getMetadata() const { return Metadata; }
/// Lock this graph to the given solver instance in preparation
/// for running the solver. This method will call solver.handleAddNode for
/// each node in the graph, and handleAddEdge for each edge, to give the
/// solver an opportunity to set up any requried metadata.
void setSolver(SolverT &S) {
assert(!Solver && "Solver already set. Call unsetSolver().");
Solver = &S;
for (auto NId : nodeIds())
Solver->handleAddNode(NId);
for (auto EId : edgeIds())
Solver->handleAddEdge(EId);
}
/// Release from solver instance.
void unsetSolver() {
assert(Solver && "Solver not set.");
Solver = nullptr;
}
/// Add a node with the given costs.
/// @param Costs Cost vector for the new node.
/// @return Node iterator for the added node.
template <typename OtherVectorT>
NodeId addNode(OtherVectorT Costs) {
// Get cost vector from the problem domain
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// Add a node bypassing the cost allocator.
/// @param Costs Cost vector ptr for the new node (must be convertible to
/// VectorPtr).
/// @return Node iterator for the added node.
///
/// This method allows for fast addition of a node whose costs don't need
/// to be passed through the cost allocator. The most common use case for
/// this is when duplicating costs from an existing node (when using a
/// pooling allocator). These have already been uniqued, so we can avoid
/// re-constructing and re-uniquing them by attaching them directly to the
/// new node.
template <typename OtherVectorPtrT>
NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
NodeId NId = addConstructedNode(NodeEntry(Costs));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// Add an edge between the given nodes with the given costs.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @param Costs Cost matrix for new edge.
/// @return Edge iterator for the added edge.
template <typename OtherVectorT>
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// Add an edge bypassing the cost allocator.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @param Costs Cost matrix for new edge.
/// @return Edge iterator for the added edge.
///
/// This method allows for fast addition of an edge whose costs don't need
/// to be passed through the cost allocator. The most common use case for
/// this is when duplicating costs from an existing edge (when using a
/// pooling allocator). These have already been uniqued, so we can avoid
/// re-constructing and re-uniquing them by attaching them directly to the
/// new edge.
template <typename OtherMatrixPtrT>
NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
OtherMatrixPtrT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
getNodeCosts(N2Id).getLength() == Costs->getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// Returns true if the graph is empty.
bool empty() const { return NodeIdSet(*this).empty(); }
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
/// Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
/// Get the number of edges in the graph.
/// @return Number of edges in the graph.
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
/// Set a node's cost vector.
/// @param NId Node to update.
/// @param Costs New costs to set.
template <typename OtherVectorT>
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
if (Solver)
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
getNode(NId).Costs = AllocatedCosts;
}
/// Get a VectorPtr to a node's cost vector. Rarely useful - use
/// getNodeCosts where possible.
/// @param NId Node id.
/// @return VectorPtr to node cost vector.
///
/// This method is primarily useful for duplicating costs quickly by
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
/// getNodeCosts when dealing with node cost values.
const VectorPtr& getNodeCostsPtr(NodeId NId) const {
return getNode(NId).Costs;
}
/// Get a node's cost vector.
/// @param NId Node id.
/// @return Node cost vector.
const Vector& getNodeCosts(NodeId NId) const {
return *getNodeCostsPtr(NId);
}
NodeMetadata& getNodeMetadata(NodeId NId) {
return getNode(NId).Metadata;
}
const NodeMetadata& getNodeMetadata(NodeId NId) const {
return getNode(NId).Metadata;
}
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
return getNode(NId).getAdjEdgeIds().size();
}
/// Update an edge's cost matrix.
/// @param EId Edge id.
/// @param Costs New cost matrix.
template <typename OtherMatrixT>
void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
if (Solver)
Solver->handleUpdateCosts(EId, *AllocatedCosts);
getEdge(EId).Costs = AllocatedCosts;
}
/// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
/// getEdgeCosts where possible.
/// @param EId Edge id.
/// @return MatrixPtr to edge cost matrix.
///
/// This method is primarily useful for duplicating costs quickly by
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
/// getEdgeCosts when dealing with edge cost values.
const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
return getEdge(EId).Costs;
}
/// Get an edge's cost matrix.
/// @param EId Edge id.
/// @return Edge cost matrix.
const Matrix& getEdgeCosts(EdgeId EId) const {
return *getEdge(EId).Costs;
}
EdgeMetadata& getEdgeMetadata(EdgeId EId) {
return getEdge(EId).Metadata;
}
const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
return getEdge(EId).Metadata;
}
/// Get the first node connected to this edge.
/// @param EId Edge id.
/// @return The first node connected to the given edge.
NodeId getEdgeNode1Id(EdgeId EId) const {
return getEdge(EId).getN1Id();
}
/// Get the second node connected to this edge.
/// @param EId Edge id.
/// @return The second node connected to the given edge.
NodeId getEdgeNode2Id(EdgeId EId) const {
return getEdge(EId).getN2Id();
}
/// Get the "other" node connected to this edge.
/// @param EId Edge id.
/// @param NId Node id for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
if (E.getN1Id() == NId) {
return E.getN2Id();
} // else
return E.getN1Id();
}
/// Get the edge connecting two nodes.
/// @param N1Id First node id.
/// @param N2Id Second node id.
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
for (auto AEId : adjEdgeIds(N1Id)) {
if ((getEdgeNode1Id(AEId) == N2Id) ||
(getEdgeNode2Id(AEId) == N2Id)) {
return AEId;
}
}
return invalidEdgeId();
}
/// Remove a node from the graph.
/// @param NId Node id.
void removeNode(NodeId NId) {
if (Solver)
Solver->handleRemoveNode(NId);
NodeEntry &N = getNode(NId);
// TODO: Can this be for-each'd?
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
AEEnd = N.adjEdgesEnd();
AEItr != AEEnd;) {
EdgeId EId = *AEItr;
++AEItr;
removeEdge(EId);
}
FreeNodeIds.push_back(NId);
}
/// Disconnect an edge from the given node.
///
/// Removes the given edge from the adjacency list of the given node.
/// This operation leaves the edge in an 'asymmetric' state: It will no
/// longer appear in an iteration over the given node's (NId's) edges, but
/// will appear in an iteration over the 'other', unnamed node's edges.
///
/// This does not correspond to any normal graph operation, but exists to
/// support efficient PBQP graph-reduction based solvers. It is used to
/// 'effectively' remove the unnamed node from the graph while the solver
/// is performing the reduction. The solver will later call reconnectNode
/// to restore the edge in the named node's adjacency list.
///
/// Since the degree of a node is the number of connected edges,
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
/// drop by 1.
///
/// A disconnected edge WILL still appear in an iteration over the graph
/// edges.
///
/// A disconnected edge should not be removed from the graph, it should be
/// reconnected first.
///
/// A disconnected edge can be reconnected by calling the reconnectEdge
/// method.
void disconnectEdge(EdgeId EId, NodeId NId) {
if (Solver)
Solver->handleDisconnectEdge(EId, NId);
EdgeEntry &E = getEdge(EId);
E.disconnectFrom(*this, NId);
}
/// Convenience method to disconnect all neighbours from the given
/// node.
void disconnectAllNeighborsFromNode(NodeId NId) {
for (auto AEId : adjEdgeIds(NId))
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
}
/// Re-attach an edge to its nodes.
///
/// Adds an edge that had been previously disconnected back into the
/// adjacency set of the nodes that the edge connects.
void reconnectEdge(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
E.connectTo(*this, EId, NId);
if (Solver)
Solver->handleReconnectEdge(EId, NId);
}
/// Remove an edge from the graph.
/// @param EId Edge id.
void removeEdge(EdgeId EId) {
if (Solver)
Solver->handleRemoveEdge(EId);
EdgeEntry &E = getEdge(EId);
E.disconnect();
FreeEdgeIds.push_back(EId);
Edges[EId].invalidate();
}
/// Remove all nodes and edges from the graph.
void clear() {
Nodes.clear();
FreeNodeIds.clear();
Edges.clear();
FreeEdgeIds.clear();
}
};
} // end namespace PBQP
} // end namespace llvm
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP