526 lines
19 KiB
C
526 lines
19 KiB
C
|
//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements an abstract sparse conditional propagation algorithm,
|
||
|
// modeled after SCCP, but with a customizable lattice function.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
|
||
|
#define LLVM_ANALYSIS_SPARSEPROPAGATION_H
|
||
|
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include <set>
|
||
|
|
||
|
#define DEBUG_TYPE "sparseprop"
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
/// A template for translating between LLVM Values and LatticeKeys. Clients must
|
||
|
/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
|
||
|
template <class LatticeKey> struct LatticeKeyInfo {
|
||
|
// static inline Value *getValueFromLatticeKey(LatticeKey Key);
|
||
|
// static inline LatticeKey getLatticeKeyFromValue(Value *V);
|
||
|
};
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal,
|
||
|
class KeyInfo = LatticeKeyInfo<LatticeKey>>
|
||
|
class SparseSolver;
|
||
|
|
||
|
/// AbstractLatticeFunction - This class is implemented by the dataflow instance
|
||
|
/// to specify what the lattice values are and how they handle merges etc. This
|
||
|
/// gives the client the power to compute lattice values from instructions,
|
||
|
/// constants, etc. The current requirement is that lattice values must be
|
||
|
/// copyable. At the moment, nothing tries to avoid copying. Additionally,
|
||
|
/// lattice keys must be able to be used as keys of a mapping data structure.
|
||
|
/// Internally, the generic solver currently uses a DenseMap to map lattice keys
|
||
|
/// to lattice values. If the lattice key is a non-standard type, a
|
||
|
/// specialization of DenseMapInfo must be provided.
|
||
|
template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
|
||
|
private:
|
||
|
LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
|
||
|
|
||
|
public:
|
||
|
AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
|
||
|
LatticeVal untrackedVal) {
|
||
|
UndefVal = undefVal;
|
||
|
OverdefinedVal = overdefinedVal;
|
||
|
UntrackedVal = untrackedVal;
|
||
|
}
|
||
|
|
||
|
virtual ~AbstractLatticeFunction() = default;
|
||
|
|
||
|
LatticeVal getUndefVal() const { return UndefVal; }
|
||
|
LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
|
||
|
LatticeVal getUntrackedVal() const { return UntrackedVal; }
|
||
|
|
||
|
/// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
|
||
|
/// to the analysis (i.e., it would always return UntrackedVal), this
|
||
|
/// function can return true to avoid pointless work.
|
||
|
virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
|
||
|
|
||
|
/// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
|
||
|
/// given LatticeKey.
|
||
|
virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
|
||
|
return getOverdefinedVal();
|
||
|
}
|
||
|
|
||
|
/// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
|
||
|
/// one that the we want to handle through ComputeInstructionState.
|
||
|
virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
|
||
|
|
||
|
/// MergeValues - Compute and return the merge of the two specified lattice
|
||
|
/// values. Merging should only move one direction down the lattice to
|
||
|
/// guarantee convergence (toward overdefined).
|
||
|
virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
|
||
|
return getOverdefinedVal(); // always safe, never useful.
|
||
|
}
|
||
|
|
||
|
/// ComputeInstructionState - Compute the LatticeKeys that change as a result
|
||
|
/// of executing instruction \p I. Their associated LatticeVals are store in
|
||
|
/// \p ChangedValues.
|
||
|
virtual void
|
||
|
ComputeInstructionState(Instruction &I,
|
||
|
DenseMap<LatticeKey, LatticeVal> &ChangedValues,
|
||
|
SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
|
||
|
|
||
|
/// PrintLatticeVal - Render the given LatticeVal to the specified stream.
|
||
|
virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
|
||
|
|
||
|
/// PrintLatticeKey - Render the given LatticeKey to the specified stream.
|
||
|
virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
|
||
|
|
||
|
/// GetValueFromLatticeVal - If the given LatticeVal is representable as an
|
||
|
/// LLVM value, return it; otherwise, return nullptr. If a type is given, the
|
||
|
/// returned value must have the same type. This function is used by the
|
||
|
/// generic solver in attempting to resolve branch and switch conditions.
|
||
|
virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
|
||
|
return nullptr;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// SparseSolver - This class is a general purpose solver for Sparse Conditional
|
||
|
/// Propagation with a programmable lattice function.
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
class SparseSolver {
|
||
|
|
||
|
/// LatticeFunc - This is the object that knows the lattice and how to
|
||
|
/// compute transfer functions.
|
||
|
AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
|
||
|
|
||
|
/// ValueState - Holds the LatticeVals associated with LatticeKeys.
|
||
|
DenseMap<LatticeKey, LatticeVal> ValueState;
|
||
|
|
||
|
/// BBExecutable - Holds the basic blocks that are executable.
|
||
|
SmallPtrSet<BasicBlock *, 16> BBExecutable;
|
||
|
|
||
|
/// ValueWorkList - Holds values that should be processed.
|
||
|
SmallVector<Value *, 64> ValueWorkList;
|
||
|
|
||
|
/// BBWorkList - Holds basic blocks that should be processed.
|
||
|
SmallVector<BasicBlock *, 64> BBWorkList;
|
||
|
|
||
|
using Edge = std::pair<BasicBlock *, BasicBlock *>;
|
||
|
|
||
|
/// KnownFeasibleEdges - Entries in this set are edges which have already had
|
||
|
/// PHI nodes retriggered.
|
||
|
std::set<Edge> KnownFeasibleEdges;
|
||
|
|
||
|
public:
|
||
|
explicit SparseSolver(
|
||
|
AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
|
||
|
: LatticeFunc(Lattice) {}
|
||
|
SparseSolver(const SparseSolver &) = delete;
|
||
|
SparseSolver &operator=(const SparseSolver &) = delete;
|
||
|
|
||
|
/// Solve - Solve for constants and executable blocks.
|
||
|
void Solve();
|
||
|
|
||
|
void Print(raw_ostream &OS) const;
|
||
|
|
||
|
/// getExistingValueState - Return the LatticeVal object corresponding to the
|
||
|
/// given value from the ValueState map. If the value is not in the map,
|
||
|
/// UntrackedVal is returned, unlike the getValueState method.
|
||
|
LatticeVal getExistingValueState(LatticeKey Key) const {
|
||
|
auto I = ValueState.find(Key);
|
||
|
return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
|
||
|
}
|
||
|
|
||
|
/// getValueState - Return the LatticeVal object corresponding to the given
|
||
|
/// value from the ValueState map. If the value is not in the map, its state
|
||
|
/// is initialized.
|
||
|
LatticeVal getValueState(LatticeKey Key);
|
||
|
|
||
|
/// isEdgeFeasible - Return true if the control flow edge from the 'From'
|
||
|
/// basic block to the 'To' basic block is currently feasible. If
|
||
|
/// AggressiveUndef is true, then this treats values with unknown lattice
|
||
|
/// values as undefined. This is generally only useful when solving the
|
||
|
/// lattice, not when querying it.
|
||
|
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
|
||
|
bool AggressiveUndef = false);
|
||
|
|
||
|
/// isBlockExecutable - Return true if there are any known feasible
|
||
|
/// edges into the basic block. This is generally only useful when
|
||
|
/// querying the lattice.
|
||
|
bool isBlockExecutable(BasicBlock *BB) const {
|
||
|
return BBExecutable.count(BB);
|
||
|
}
|
||
|
|
||
|
/// MarkBlockExecutable - This method can be used by clients to mark all of
|
||
|
/// the blocks that are known to be intrinsically live in the processed unit.
|
||
|
void MarkBlockExecutable(BasicBlock *BB);
|
||
|
|
||
|
private:
|
||
|
/// UpdateState - When the state of some LatticeKey is potentially updated to
|
||
|
/// the given LatticeVal, this function notices and adds the LLVM value
|
||
|
/// corresponding the key to the work list, if needed.
|
||
|
void UpdateState(LatticeKey Key, LatticeVal LV);
|
||
|
|
||
|
/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
|
||
|
/// work list if it is not already executable.
|
||
|
void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
|
||
|
|
||
|
/// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
||
|
/// successors are reachable from a given terminator instruction.
|
||
|
void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
|
||
|
bool AggressiveUndef);
|
||
|
|
||
|
void visitInst(Instruction &I);
|
||
|
void visitPHINode(PHINode &I);
|
||
|
void visitTerminator(Instruction &TI);
|
||
|
};
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// AbstractLatticeFunction Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal>
|
||
|
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
|
||
|
LatticeVal V, raw_ostream &OS) {
|
||
|
if (V == UndefVal)
|
||
|
OS << "undefined";
|
||
|
else if (V == OverdefinedVal)
|
||
|
OS << "overdefined";
|
||
|
else if (V == UntrackedVal)
|
||
|
OS << "untracked";
|
||
|
else
|
||
|
OS << "unknown lattice value";
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal>
|
||
|
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
|
||
|
LatticeKey Key, raw_ostream &OS) {
|
||
|
OS << "unknown lattice key";
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// SparseSolver Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
LatticeVal
|
||
|
SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
|
||
|
auto I = ValueState.find(Key);
|
||
|
if (I != ValueState.end())
|
||
|
return I->second; // Common case, in the map
|
||
|
|
||
|
if (LatticeFunc->IsUntrackedValue(Key))
|
||
|
return LatticeFunc->getUntrackedVal();
|
||
|
LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
|
||
|
|
||
|
// If this value is untracked, don't add it to the map.
|
||
|
if (LV == LatticeFunc->getUntrackedVal())
|
||
|
return LV;
|
||
|
return ValueState[Key] = std::move(LV);
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
|
||
|
LatticeVal LV) {
|
||
|
auto I = ValueState.find(Key);
|
||
|
if (I != ValueState.end() && I->second == LV)
|
||
|
return; // No change.
|
||
|
|
||
|
// Update the state of the given LatticeKey and add its corresponding LLVM
|
||
|
// value to the work list.
|
||
|
ValueState[Key] = std::move(LV);
|
||
|
if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
|
||
|
ValueWorkList.push_back(V);
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
|
||
|
BasicBlock *BB) {
|
||
|
if (!BBExecutable.insert(BB).second)
|
||
|
return;
|
||
|
LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
|
||
|
BBWorkList.push_back(BB); // Add the block to the work list!
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
|
||
|
BasicBlock *Source, BasicBlock *Dest) {
|
||
|
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
|
||
|
return; // This edge is already known to be executable!
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
|
||
|
<< " -> " << Dest->getName() << "\n");
|
||
|
|
||
|
if (BBExecutable.count(Dest)) {
|
||
|
// The destination is already executable, but we just made an edge
|
||
|
// feasible that wasn't before. Revisit the PHI nodes in the block
|
||
|
// because they have potentially new operands.
|
||
|
for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
|
||
|
visitPHINode(*cast<PHINode>(I));
|
||
|
} else {
|
||
|
MarkBlockExecutable(Dest);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
|
||
|
Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
|
||
|
Succs.resize(TI.getNumSuccessors());
|
||
|
if (TI.getNumSuccessors() == 0)
|
||
|
return;
|
||
|
|
||
|
if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
|
||
|
if (BI->isUnconditional()) {
|
||
|
Succs[0] = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
LatticeVal BCValue;
|
||
|
if (AggressiveUndef)
|
||
|
BCValue =
|
||
|
getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
|
||
|
else
|
||
|
BCValue = getExistingValueState(
|
||
|
KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
|
||
|
|
||
|
if (BCValue == LatticeFunc->getOverdefinedVal() ||
|
||
|
BCValue == LatticeFunc->getUntrackedVal()) {
|
||
|
// Overdefined condition variables can branch either way.
|
||
|
Succs[0] = Succs[1] = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If undefined, neither is feasible yet.
|
||
|
if (BCValue == LatticeFunc->getUndefVal())
|
||
|
return;
|
||
|
|
||
|
Constant *C =
|
||
|
dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
|
||
|
std::move(BCValue), BI->getCondition()->getType()));
|
||
|
if (!C || !isa<ConstantInt>(C)) {
|
||
|
// Non-constant values can go either way.
|
||
|
Succs[0] = Succs[1] = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Constant condition variables mean the branch can only go a single way
|
||
|
Succs[C->isNullValue()] = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (TI.isExceptionalTerminator() ||
|
||
|
TI.isIndirectTerminator()) {
|
||
|
Succs.assign(Succs.size(), true);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
SwitchInst &SI = cast<SwitchInst>(TI);
|
||
|
LatticeVal SCValue;
|
||
|
if (AggressiveUndef)
|
||
|
SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
|
||
|
else
|
||
|
SCValue = getExistingValueState(
|
||
|
KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
|
||
|
|
||
|
if (SCValue == LatticeFunc->getOverdefinedVal() ||
|
||
|
SCValue == LatticeFunc->getUntrackedVal()) {
|
||
|
// All destinations are executable!
|
||
|
Succs.assign(TI.getNumSuccessors(), true);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If undefined, neither is feasible yet.
|
||
|
if (SCValue == LatticeFunc->getUndefVal())
|
||
|
return;
|
||
|
|
||
|
Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
|
||
|
std::move(SCValue), SI.getCondition()->getType()));
|
||
|
if (!C || !isa<ConstantInt>(C)) {
|
||
|
// All destinations are executable!
|
||
|
Succs.assign(TI.getNumSuccessors(), true);
|
||
|
return;
|
||
|
}
|
||
|
SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
|
||
|
Succs[Case.getSuccessorIndex()] = true;
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
|
||
|
BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
|
||
|
SmallVector<bool, 16> SuccFeasible;
|
||
|
Instruction *TI = From->getTerminator();
|
||
|
getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
|
||
|
|
||
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
||
|
if (TI->getSuccessor(i) == To && SuccFeasible[i])
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
|
||
|
Instruction &TI) {
|
||
|
SmallVector<bool, 16> SuccFeasible;
|
||
|
getFeasibleSuccessors(TI, SuccFeasible, true);
|
||
|
|
||
|
BasicBlock *BB = TI.getParent();
|
||
|
|
||
|
// Mark all feasible successors executable...
|
||
|
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
|
||
|
if (SuccFeasible[i])
|
||
|
markEdgeExecutable(BB, TI.getSuccessor(i));
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
|
||
|
// The lattice function may store more information on a PHINode than could be
|
||
|
// computed from its incoming values. For example, SSI form stores its sigma
|
||
|
// functions as PHINodes with a single incoming value.
|
||
|
if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
|
||
|
DenseMap<LatticeKey, LatticeVal> ChangedValues;
|
||
|
LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
|
||
|
for (auto &ChangedValue : ChangedValues)
|
||
|
if (ChangedValue.second != LatticeFunc->getUntrackedVal())
|
||
|
UpdateState(std::move(ChangedValue.first),
|
||
|
std::move(ChangedValue.second));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
|
||
|
LatticeVal PNIV = getValueState(Key);
|
||
|
LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
|
||
|
|
||
|
// If this value is already overdefined (common) just return.
|
||
|
if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
|
||
|
return; // Quick exit
|
||
|
|
||
|
// Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
|
||
|
// and slow us down a lot. Just mark them overdefined.
|
||
|
if (PN.getNumIncomingValues() > 64) {
|
||
|
UpdateState(Key, Overdefined);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Look at all of the executable operands of the PHI node. If any of them
|
||
|
// are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
|
||
|
// transfer function to give us the merge of the incoming values.
|
||
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
||
|
// If the edge is not yet known to be feasible, it doesn't impact the PHI.
|
||
|
if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
|
||
|
continue;
|
||
|
|
||
|
// Merge in this value.
|
||
|
LatticeVal OpVal =
|
||
|
getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
|
||
|
if (OpVal != PNIV)
|
||
|
PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
|
||
|
|
||
|
if (PNIV == Overdefined)
|
||
|
break; // Rest of input values don't matter.
|
||
|
}
|
||
|
|
||
|
// Update the PHI with the compute value, which is the merge of the inputs.
|
||
|
UpdateState(Key, PNIV);
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
|
||
|
// PHIs are handled by the propagation logic, they are never passed into the
|
||
|
// transfer functions.
|
||
|
if (PHINode *PN = dyn_cast<PHINode>(&I))
|
||
|
return visitPHINode(*PN);
|
||
|
|
||
|
// Otherwise, ask the transfer function what the result is. If this is
|
||
|
// something that we care about, remember it.
|
||
|
DenseMap<LatticeKey, LatticeVal> ChangedValues;
|
||
|
LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
|
||
|
for (auto &ChangedValue : ChangedValues)
|
||
|
if (ChangedValue.second != LatticeFunc->getUntrackedVal())
|
||
|
UpdateState(ChangedValue.first, ChangedValue.second);
|
||
|
|
||
|
if (I.isTerminator())
|
||
|
visitTerminator(I);
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
|
||
|
// Process the work lists until they are empty!
|
||
|
while (!BBWorkList.empty() || !ValueWorkList.empty()) {
|
||
|
// Process the value work list.
|
||
|
while (!ValueWorkList.empty()) {
|
||
|
Value *V = ValueWorkList.back();
|
||
|
ValueWorkList.pop_back();
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
|
||
|
|
||
|
// "V" got into the work list because it made a transition. See if any
|
||
|
// users are both live and in need of updating.
|
||
|
for (User *U : V->users())
|
||
|
if (Instruction *Inst = dyn_cast<Instruction>(U))
|
||
|
if (BBExecutable.count(Inst->getParent())) // Inst is executable?
|
||
|
visitInst(*Inst);
|
||
|
}
|
||
|
|
||
|
// Process the basic block work list.
|
||
|
while (!BBWorkList.empty()) {
|
||
|
BasicBlock *BB = BBWorkList.pop_back_val();
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
|
||
|
|
||
|
// Notify all instructions in this basic block that they are newly
|
||
|
// executable.
|
||
|
for (Instruction &I : *BB)
|
||
|
visitInst(I);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class LatticeKey, class LatticeVal, class KeyInfo>
|
||
|
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
|
||
|
raw_ostream &OS) const {
|
||
|
if (ValueState.empty())
|
||
|
return;
|
||
|
|
||
|
LatticeKey Key;
|
||
|
LatticeVal LV;
|
||
|
|
||
|
OS << "ValueState:\n";
|
||
|
for (auto &Entry : ValueState) {
|
||
|
std::tie(Key, LV) = Entry;
|
||
|
if (LV == LatticeFunc->getUntrackedVal())
|
||
|
continue;
|
||
|
OS << "\t";
|
||
|
LatticeFunc->PrintLatticeVal(LV, OS);
|
||
|
OS << ": ";
|
||
|
LatticeFunc->PrintLatticeKey(Key, OS);
|
||
|
OS << "\n";
|
||
|
}
|
||
|
}
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#undef DEBUG_TYPE
|
||
|
|
||
|
#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
|