286 lines
8.6 KiB
C
286 lines
8.6 KiB
C
|
//===- llvm/ADT/SmallSet.h - 'Normally small' sets --------------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file defines the SmallSet class.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_ADT_SMALLSET_H
|
||
|
#define LLVM_ADT_SMALLSET_H
|
||
|
|
||
|
#include "llvm/ADT/None.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/iterator.h"
|
||
|
#include "llvm/Support/Compiler.h"
|
||
|
#include "llvm/Support/type_traits.h"
|
||
|
#include <cstddef>
|
||
|
#include <functional>
|
||
|
#include <set>
|
||
|
#include <type_traits>
|
||
|
#include <utility>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
/// SmallSetIterator - This class implements a const_iterator for SmallSet by
|
||
|
/// delegating to the underlying SmallVector or Set iterators.
|
||
|
template <typename T, unsigned N, typename C>
|
||
|
class SmallSetIterator
|
||
|
: public iterator_facade_base<SmallSetIterator<T, N, C>,
|
||
|
std::forward_iterator_tag, T> {
|
||
|
private:
|
||
|
using SetIterTy = typename std::set<T, C>::const_iterator;
|
||
|
using VecIterTy = typename SmallVector<T, N>::const_iterator;
|
||
|
using SelfTy = SmallSetIterator<T, N, C>;
|
||
|
|
||
|
/// Iterators to the parts of the SmallSet containing the data. They are set
|
||
|
/// depending on isSmall.
|
||
|
union {
|
||
|
SetIterTy SetIter;
|
||
|
VecIterTy VecIter;
|
||
|
};
|
||
|
|
||
|
bool isSmall;
|
||
|
|
||
|
public:
|
||
|
SmallSetIterator(SetIterTy SetIter) : SetIter(SetIter), isSmall(false) {}
|
||
|
|
||
|
SmallSetIterator(VecIterTy VecIter) : VecIter(VecIter), isSmall(true) {}
|
||
|
|
||
|
// Spell out destructor, copy/move constructor and assignment operators for
|
||
|
// MSVC STL, where set<T>::const_iterator is not trivially copy constructible.
|
||
|
~SmallSetIterator() {
|
||
|
if (isSmall)
|
||
|
VecIter.~VecIterTy();
|
||
|
else
|
||
|
SetIter.~SetIterTy();
|
||
|
}
|
||
|
|
||
|
SmallSetIterator(const SmallSetIterator &Other) : isSmall(Other.isSmall) {
|
||
|
if (isSmall)
|
||
|
VecIter = Other.VecIter;
|
||
|
else
|
||
|
// Use placement new, to make sure SetIter is properly constructed, even
|
||
|
// if it is not trivially copy-able (e.g. in MSVC).
|
||
|
new (&SetIter) SetIterTy(Other.SetIter);
|
||
|
}
|
||
|
|
||
|
SmallSetIterator(SmallSetIterator &&Other) : isSmall(Other.isSmall) {
|
||
|
if (isSmall)
|
||
|
VecIter = std::move(Other.VecIter);
|
||
|
else
|
||
|
// Use placement new, to make sure SetIter is properly constructed, even
|
||
|
// if it is not trivially copy-able (e.g. in MSVC).
|
||
|
new (&SetIter) SetIterTy(std::move(Other.SetIter));
|
||
|
}
|
||
|
|
||
|
SmallSetIterator& operator=(const SmallSetIterator& Other) {
|
||
|
// Call destructor for SetIter, so it gets properly destroyed if it is
|
||
|
// not trivially destructible in case we are setting VecIter.
|
||
|
if (!isSmall)
|
||
|
SetIter.~SetIterTy();
|
||
|
|
||
|
isSmall = Other.isSmall;
|
||
|
if (isSmall)
|
||
|
VecIter = Other.VecIter;
|
||
|
else
|
||
|
new (&SetIter) SetIterTy(Other.SetIter);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
SmallSetIterator& operator=(SmallSetIterator&& Other) {
|
||
|
// Call destructor for SetIter, so it gets properly destroyed if it is
|
||
|
// not trivially destructible in case we are setting VecIter.
|
||
|
if (!isSmall)
|
||
|
SetIter.~SetIterTy();
|
||
|
|
||
|
isSmall = Other.isSmall;
|
||
|
if (isSmall)
|
||
|
VecIter = std::move(Other.VecIter);
|
||
|
else
|
||
|
new (&SetIter) SetIterTy(std::move(Other.SetIter));
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
bool operator==(const SmallSetIterator &RHS) const {
|
||
|
if (isSmall != RHS.isSmall)
|
||
|
return false;
|
||
|
if (isSmall)
|
||
|
return VecIter == RHS.VecIter;
|
||
|
return SetIter == RHS.SetIter;
|
||
|
}
|
||
|
|
||
|
SmallSetIterator &operator++() { // Preincrement
|
||
|
if (isSmall)
|
||
|
VecIter++;
|
||
|
else
|
||
|
SetIter++;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
const T &operator*() const { return isSmall ? *VecIter : *SetIter; }
|
||
|
};
|
||
|
|
||
|
/// SmallSet - This maintains a set of unique values, optimizing for the case
|
||
|
/// when the set is small (less than N). In this case, the set can be
|
||
|
/// maintained with no mallocs. If the set gets large, we expand to using an
|
||
|
/// std::set to maintain reasonable lookup times.
|
||
|
template <typename T, unsigned N, typename C = std::less<T>>
|
||
|
class SmallSet {
|
||
|
/// Use a SmallVector to hold the elements here (even though it will never
|
||
|
/// reach its 'large' stage) to avoid calling the default ctors of elements
|
||
|
/// we will never use.
|
||
|
SmallVector<T, N> Vector;
|
||
|
std::set<T, C> Set;
|
||
|
|
||
|
using VIterator = typename SmallVector<T, N>::const_iterator;
|
||
|
using mutable_iterator = typename SmallVector<T, N>::iterator;
|
||
|
|
||
|
// In small mode SmallPtrSet uses linear search for the elements, so it is
|
||
|
// not a good idea to choose this value too high. You may consider using a
|
||
|
// DenseSet<> instead if you expect many elements in the set.
|
||
|
static_assert(N <= 32, "N should be small");
|
||
|
|
||
|
public:
|
||
|
using size_type = size_t;
|
||
|
using const_iterator = SmallSetIterator<T, N, C>;
|
||
|
|
||
|
SmallSet() = default;
|
||
|
|
||
|
LLVM_NODISCARD bool empty() const {
|
||
|
return Vector.empty() && Set.empty();
|
||
|
}
|
||
|
|
||
|
size_type size() const {
|
||
|
return isSmall() ? Vector.size() : Set.size();
|
||
|
}
|
||
|
|
||
|
/// count - Return 1 if the element is in the set, 0 otherwise.
|
||
|
size_type count(const T &V) const {
|
||
|
if (isSmall()) {
|
||
|
// Since the collection is small, just do a linear search.
|
||
|
return vfind(V) == Vector.end() ? 0 : 1;
|
||
|
} else {
|
||
|
return Set.count(V);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// insert - Insert an element into the set if it isn't already there.
|
||
|
/// Returns true if the element is inserted (it was not in the set before).
|
||
|
/// The first value of the returned pair is unused and provided for
|
||
|
/// partial compatibility with the standard library self-associative container
|
||
|
/// concept.
|
||
|
// FIXME: Add iterators that abstract over the small and large form, and then
|
||
|
// return those here.
|
||
|
std::pair<NoneType, bool> insert(const T &V) {
|
||
|
if (!isSmall())
|
||
|
return std::make_pair(None, Set.insert(V).second);
|
||
|
|
||
|
VIterator I = vfind(V);
|
||
|
if (I != Vector.end()) // Don't reinsert if it already exists.
|
||
|
return std::make_pair(None, false);
|
||
|
if (Vector.size() < N) {
|
||
|
Vector.push_back(V);
|
||
|
return std::make_pair(None, true);
|
||
|
}
|
||
|
|
||
|
// Otherwise, grow from vector to set.
|
||
|
while (!Vector.empty()) {
|
||
|
Set.insert(Vector.back());
|
||
|
Vector.pop_back();
|
||
|
}
|
||
|
Set.insert(V);
|
||
|
return std::make_pair(None, true);
|
||
|
}
|
||
|
|
||
|
template <typename IterT>
|
||
|
void insert(IterT I, IterT E) {
|
||
|
for (; I != E; ++I)
|
||
|
insert(*I);
|
||
|
}
|
||
|
|
||
|
bool erase(const T &V) {
|
||
|
if (!isSmall())
|
||
|
return Set.erase(V);
|
||
|
for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
|
||
|
if (*I == V) {
|
||
|
Vector.erase(I);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void clear() {
|
||
|
Vector.clear();
|
||
|
Set.clear();
|
||
|
}
|
||
|
|
||
|
const_iterator begin() const {
|
||
|
if (isSmall())
|
||
|
return {Vector.begin()};
|
||
|
return {Set.begin()};
|
||
|
}
|
||
|
|
||
|
const_iterator end() const {
|
||
|
if (isSmall())
|
||
|
return {Vector.end()};
|
||
|
return {Set.end()};
|
||
|
}
|
||
|
|
||
|
/// Check if the SmallSet contains the given element.
|
||
|
bool contains(const T &V) const {
|
||
|
if (isSmall())
|
||
|
return vfind(V) != Vector.end();
|
||
|
return Set.find(V) != Set.end();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
bool isSmall() const { return Set.empty(); }
|
||
|
|
||
|
VIterator vfind(const T &V) const {
|
||
|
for (VIterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
|
||
|
if (*I == V)
|
||
|
return I;
|
||
|
return Vector.end();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// If this set is of pointer values, transparently switch over to using
|
||
|
/// SmallPtrSet for performance.
|
||
|
template <typename PointeeType, unsigned N>
|
||
|
class SmallSet<PointeeType*, N> : public SmallPtrSet<PointeeType*, N> {};
|
||
|
|
||
|
/// Equality comparison for SmallSet.
|
||
|
///
|
||
|
/// Iterates over elements of LHS confirming that each element is also a member
|
||
|
/// of RHS, and that RHS contains no additional values.
|
||
|
/// Equivalent to N calls to RHS.count.
|
||
|
/// For small-set mode amortized complexity is O(N^2)
|
||
|
/// For large-set mode amortized complexity is linear, worst case is O(N^2) (if
|
||
|
/// every hash collides).
|
||
|
template <typename T, unsigned LN, unsigned RN, typename C>
|
||
|
bool operator==(const SmallSet<T, LN, C> &LHS, const SmallSet<T, RN, C> &RHS) {
|
||
|
if (LHS.size() != RHS.size())
|
||
|
return false;
|
||
|
|
||
|
// All elements in LHS must also be in RHS
|
||
|
return all_of(LHS, [&RHS](const T &E) { return RHS.count(E); });
|
||
|
}
|
||
|
|
||
|
/// Inequality comparison for SmallSet.
|
||
|
///
|
||
|
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
|
||
|
template <typename T, unsigned LN, unsigned RN, typename C>
|
||
|
bool operator!=(const SmallSet<T, LN, C> &LHS, const SmallSet<T, RN, C> &RHS) {
|
||
|
return !(LHS == RHS);
|
||
|
}
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_ADT_SMALLSET_H
|