240 lines
8.0 KiB
C
240 lines
8.0 KiB
C
|
//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
/// \file
|
||
|
///
|
||
|
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
|
||
|
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
|
||
|
/// algorithm.
|
||
|
///
|
||
|
/// The SCC iterator has the important property that if a node in SCC S1 has an
|
||
|
/// edge to a node in SCC S2, then it visits S1 *after* S2.
|
||
|
///
|
||
|
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
|
||
|
/// This requires some simple wrappers and is not supported yet.)
|
||
|
///
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_ADT_SCCITERATOR_H
|
||
|
#define LLVM_ADT_SCCITERATOR_H
|
||
|
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/GraphTraits.h"
|
||
|
#include "llvm/ADT/iterator.h"
|
||
|
#include <cassert>
|
||
|
#include <cstddef>
|
||
|
#include <iterator>
|
||
|
#include <vector>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
/// Enumerate the SCCs of a directed graph in reverse topological order
|
||
|
/// of the SCC DAG.
|
||
|
///
|
||
|
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
|
||
|
/// build up a vector of nodes in a particular SCC. Note that it is a forward
|
||
|
/// iterator and thus you cannot backtrack or re-visit nodes.
|
||
|
template <class GraphT, class GT = GraphTraits<GraphT>>
|
||
|
class scc_iterator : public iterator_facade_base<
|
||
|
scc_iterator<GraphT, GT>, std::forward_iterator_tag,
|
||
|
const std::vector<typename GT::NodeRef>, ptrdiff_t> {
|
||
|
using NodeRef = typename GT::NodeRef;
|
||
|
using ChildItTy = typename GT::ChildIteratorType;
|
||
|
using SccTy = std::vector<NodeRef>;
|
||
|
using reference = typename scc_iterator::reference;
|
||
|
|
||
|
/// Element of VisitStack during DFS.
|
||
|
struct StackElement {
|
||
|
NodeRef Node; ///< The current node pointer.
|
||
|
ChildItTy NextChild; ///< The next child, modified inplace during DFS.
|
||
|
unsigned MinVisited; ///< Minimum uplink value of all children of Node.
|
||
|
|
||
|
StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
|
||
|
: Node(Node), NextChild(Child), MinVisited(Min) {}
|
||
|
|
||
|
bool operator==(const StackElement &Other) const {
|
||
|
return Node == Other.Node &&
|
||
|
NextChild == Other.NextChild &&
|
||
|
MinVisited == Other.MinVisited;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// The visit counters used to detect when a complete SCC is on the stack.
|
||
|
/// visitNum is the global counter.
|
||
|
///
|
||
|
/// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
|
||
|
unsigned visitNum;
|
||
|
DenseMap<NodeRef, unsigned> nodeVisitNumbers;
|
||
|
|
||
|
/// Stack holding nodes of the SCC.
|
||
|
std::vector<NodeRef> SCCNodeStack;
|
||
|
|
||
|
/// The current SCC, retrieved using operator*().
|
||
|
SccTy CurrentSCC;
|
||
|
|
||
|
/// DFS stack, Used to maintain the ordering. The top contains the current
|
||
|
/// node, the next child to visit, and the minimum uplink value of all child
|
||
|
std::vector<StackElement> VisitStack;
|
||
|
|
||
|
/// A single "visit" within the non-recursive DFS traversal.
|
||
|
void DFSVisitOne(NodeRef N);
|
||
|
|
||
|
/// The stack-based DFS traversal; defined below.
|
||
|
void DFSVisitChildren();
|
||
|
|
||
|
/// Compute the next SCC using the DFS traversal.
|
||
|
void GetNextSCC();
|
||
|
|
||
|
scc_iterator(NodeRef entryN) : visitNum(0) {
|
||
|
DFSVisitOne(entryN);
|
||
|
GetNextSCC();
|
||
|
}
|
||
|
|
||
|
/// End is when the DFS stack is empty.
|
||
|
scc_iterator() = default;
|
||
|
|
||
|
public:
|
||
|
static scc_iterator begin(const GraphT &G) {
|
||
|
return scc_iterator(GT::getEntryNode(G));
|
||
|
}
|
||
|
static scc_iterator end(const GraphT &) { return scc_iterator(); }
|
||
|
|
||
|
/// Direct loop termination test which is more efficient than
|
||
|
/// comparison with \c end().
|
||
|
bool isAtEnd() const {
|
||
|
assert(!CurrentSCC.empty() || VisitStack.empty());
|
||
|
return CurrentSCC.empty();
|
||
|
}
|
||
|
|
||
|
bool operator==(const scc_iterator &x) const {
|
||
|
return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
|
||
|
}
|
||
|
|
||
|
scc_iterator &operator++() {
|
||
|
GetNextSCC();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
reference operator*() const {
|
||
|
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
|
||
|
return CurrentSCC;
|
||
|
}
|
||
|
|
||
|
/// Test if the current SCC has a cycle.
|
||
|
///
|
||
|
/// If the SCC has more than one node, this is trivially true. If not, it may
|
||
|
/// still contain a cycle if the node has an edge back to itself.
|
||
|
bool hasCycle() const;
|
||
|
|
||
|
/// This informs the \c scc_iterator that the specified \c Old node
|
||
|
/// has been deleted, and \c New is to be used in its place.
|
||
|
void ReplaceNode(NodeRef Old, NodeRef New) {
|
||
|
assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
|
||
|
// Do the assignment in two steps, in case 'New' is not yet in the map, and
|
||
|
// inserting it causes the map to grow.
|
||
|
auto tempVal = nodeVisitNumbers[Old];
|
||
|
nodeVisitNumbers[New] = tempVal;
|
||
|
nodeVisitNumbers.erase(Old);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class GraphT, class GT>
|
||
|
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
|
||
|
++visitNum;
|
||
|
nodeVisitNumbers[N] = visitNum;
|
||
|
SCCNodeStack.push_back(N);
|
||
|
VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
|
||
|
#if 0 // Enable if needed when debugging.
|
||
|
dbgs() << "TarjanSCC: Node " << N <<
|
||
|
" : visitNum = " << visitNum << "\n";
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
template <class GraphT, class GT>
|
||
|
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
|
||
|
assert(!VisitStack.empty());
|
||
|
while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
|
||
|
// TOS has at least one more child so continue DFS
|
||
|
NodeRef childN = *VisitStack.back().NextChild++;
|
||
|
typename DenseMap<NodeRef, unsigned>::iterator Visited =
|
||
|
nodeVisitNumbers.find(childN);
|
||
|
if (Visited == nodeVisitNumbers.end()) {
|
||
|
// this node has never been seen.
|
||
|
DFSVisitOne(childN);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
unsigned childNum = Visited->second;
|
||
|
if (VisitStack.back().MinVisited > childNum)
|
||
|
VisitStack.back().MinVisited = childNum;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
|
||
|
CurrentSCC.clear(); // Prepare to compute the next SCC
|
||
|
while (!VisitStack.empty()) {
|
||
|
DFSVisitChildren();
|
||
|
|
||
|
// Pop the leaf on top of the VisitStack.
|
||
|
NodeRef visitingN = VisitStack.back().Node;
|
||
|
unsigned minVisitNum = VisitStack.back().MinVisited;
|
||
|
assert(VisitStack.back().NextChild == GT::child_end(visitingN));
|
||
|
VisitStack.pop_back();
|
||
|
|
||
|
// Propagate MinVisitNum to parent so we can detect the SCC starting node.
|
||
|
if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
|
||
|
VisitStack.back().MinVisited = minVisitNum;
|
||
|
|
||
|
#if 0 // Enable if needed when debugging.
|
||
|
dbgs() << "TarjanSCC: Popped node " << visitingN <<
|
||
|
" : minVisitNum = " << minVisitNum << "; Node visit num = " <<
|
||
|
nodeVisitNumbers[visitingN] << "\n";
|
||
|
#endif
|
||
|
|
||
|
if (minVisitNum != nodeVisitNumbers[visitingN])
|
||
|
continue;
|
||
|
|
||
|
// A full SCC is on the SCCNodeStack! It includes all nodes below
|
||
|
// visitingN on the stack. Copy those nodes to CurrentSCC,
|
||
|
// reset their minVisit values, and return (this suspends
|
||
|
// the DFS traversal till the next ++).
|
||
|
do {
|
||
|
CurrentSCC.push_back(SCCNodeStack.back());
|
||
|
SCCNodeStack.pop_back();
|
||
|
nodeVisitNumbers[CurrentSCC.back()] = ~0U;
|
||
|
} while (CurrentSCC.back() != visitingN);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class GraphT, class GT>
|
||
|
bool scc_iterator<GraphT, GT>::hasCycle() const {
|
||
|
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
|
||
|
if (CurrentSCC.size() > 1)
|
||
|
return true;
|
||
|
NodeRef N = CurrentSCC.front();
|
||
|
for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
|
||
|
++CI)
|
||
|
if (*CI == N)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// Construct the begin iterator for a deduced graph type T.
|
||
|
template <class T> scc_iterator<T> scc_begin(const T &G) {
|
||
|
return scc_iterator<T>::begin(G);
|
||
|
}
|
||
|
|
||
|
/// Construct the end iterator for a deduced graph type T.
|
||
|
template <class T> scc_iterator<T> scc_end(const T &G) {
|
||
|
return scc_iterator<T>::end(G);
|
||
|
}
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_ADT_SCCITERATOR_H
|