llvm-for-llvmta/include/llvm/ADT/Optional.h

495 lines
13 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- Optional.h - Simple variant for passing optional values --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides Optional, a template class modeled in the spirit of
// OCaml's 'opt' variant. The idea is to strongly type whether or not
// a value can be optional.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_OPTIONAL_H
#define LLVM_ADT_OPTIONAL_H
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
#include <memory>
#include <new>
#include <utility>
namespace llvm {
class raw_ostream;
namespace optional_detail {
struct in_place_t {};
/// Storage for any type.
//
// The specialization condition intentionally uses
// llvm::is_trivially_copy_constructible instead of
// std::is_trivially_copy_constructible. GCC versions prior to 7.4 may
// instantiate the copy constructor of `T` when
// std::is_trivially_copy_constructible is instantiated. This causes
// compilation to fail if we query the trivially copy constructible property of
// a class which is not copy constructible.
//
// The current implementation of OptionalStorage insists that in order to use
// the trivial specialization, the value_type must be trivially copy
// constructible and trivially copy assignable due to =default implementations
// of the copy/move constructor/assignment. It does not follow that this is
// necessarily the case std::is_trivially_copyable is true (hence the expanded
// specialization condition).
//
// The move constructible / assignable conditions emulate the remaining behavior
// of std::is_trivially_copyable.
template <typename T, bool = (llvm::is_trivially_copy_constructible<T>::value &&
std::is_trivially_copy_assignable<T>::value &&
(std::is_trivially_move_constructible<T>::value ||
!std::is_move_constructible<T>::value) &&
(std::is_trivially_move_assignable<T>::value ||
!std::is_move_assignable<T>::value))>
class OptionalStorage {
union {
char empty;
T value;
};
bool hasVal;
public:
~OptionalStorage() { reset(); }
constexpr OptionalStorage() noexcept : empty(), hasVal(false) {}
constexpr OptionalStorage(OptionalStorage const &other) : OptionalStorage() {
if (other.hasValue()) {
emplace(other.value);
}
}
constexpr OptionalStorage(OptionalStorage &&other) : OptionalStorage() {
if (other.hasValue()) {
emplace(std::move(other.value));
}
}
template <class... Args>
constexpr explicit OptionalStorage(in_place_t, Args &&... args)
: value(std::forward<Args>(args)...), hasVal(true) {}
void reset() noexcept {
if (hasVal) {
value.~T();
hasVal = false;
}
}
constexpr bool hasValue() const noexcept { return hasVal; }
T &getValue() LLVM_LVALUE_FUNCTION noexcept {
assert(hasVal);
return value;
}
constexpr T const &getValue() const LLVM_LVALUE_FUNCTION noexcept {
assert(hasVal);
return value;
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
T &&getValue() && noexcept {
assert(hasVal);
return std::move(value);
}
#endif
template <class... Args> void emplace(Args &&... args) {
reset();
::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...);
hasVal = true;
}
OptionalStorage &operator=(T const &y) {
if (hasValue()) {
value = y;
} else {
::new ((void *)std::addressof(value)) T(y);
hasVal = true;
}
return *this;
}
OptionalStorage &operator=(T &&y) {
if (hasValue()) {
value = std::move(y);
} else {
::new ((void *)std::addressof(value)) T(std::move(y));
hasVal = true;
}
return *this;
}
OptionalStorage &operator=(OptionalStorage const &other) {
if (other.hasValue()) {
if (hasValue()) {
value = other.value;
} else {
::new ((void *)std::addressof(value)) T(other.value);
hasVal = true;
}
} else {
reset();
}
return *this;
}
OptionalStorage &operator=(OptionalStorage &&other) {
if (other.hasValue()) {
if (hasValue()) {
value = std::move(other.value);
} else {
::new ((void *)std::addressof(value)) T(std::move(other.value));
hasVal = true;
}
} else {
reset();
}
return *this;
}
};
template <typename T> class OptionalStorage<T, true> {
union {
char empty;
T value;
};
bool hasVal = false;
public:
~OptionalStorage() = default;
constexpr OptionalStorage() noexcept : empty{} {}
constexpr OptionalStorage(OptionalStorage const &other) = default;
constexpr OptionalStorage(OptionalStorage &&other) = default;
OptionalStorage &operator=(OptionalStorage const &other) = default;
OptionalStorage &operator=(OptionalStorage &&other) = default;
template <class... Args>
constexpr explicit OptionalStorage(in_place_t, Args &&... args)
: value(std::forward<Args>(args)...), hasVal(true) {}
void reset() noexcept {
if (hasVal) {
value.~T();
hasVal = false;
}
}
constexpr bool hasValue() const noexcept { return hasVal; }
T &getValue() LLVM_LVALUE_FUNCTION noexcept {
assert(hasVal);
return value;
}
constexpr T const &getValue() const LLVM_LVALUE_FUNCTION noexcept {
assert(hasVal);
return value;
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
T &&getValue() && noexcept {
assert(hasVal);
return std::move(value);
}
#endif
template <class... Args> void emplace(Args &&... args) {
reset();
::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...);
hasVal = true;
}
OptionalStorage &operator=(T const &y) {
if (hasValue()) {
value = y;
} else {
::new ((void *)std::addressof(value)) T(y);
hasVal = true;
}
return *this;
}
OptionalStorage &operator=(T &&y) {
if (hasValue()) {
value = std::move(y);
} else {
::new ((void *)std::addressof(value)) T(std::move(y));
hasVal = true;
}
return *this;
}
};
} // namespace optional_detail
template <typename T> class Optional {
optional_detail::OptionalStorage<T> Storage;
public:
using value_type = T;
constexpr Optional() {}
constexpr Optional(NoneType) {}
constexpr Optional(const T &y) : Storage(optional_detail::in_place_t{}, y) {}
constexpr Optional(const Optional &O) = default;
constexpr Optional(T &&y)
: Storage(optional_detail::in_place_t{}, std::move(y)) {}
constexpr Optional(Optional &&O) = default;
Optional &operator=(T &&y) {
Storage = std::move(y);
return *this;
}
Optional &operator=(Optional &&O) = default;
/// Create a new object by constructing it in place with the given arguments.
template <typename... ArgTypes> void emplace(ArgTypes &&... Args) {
Storage.emplace(std::forward<ArgTypes>(Args)...);
}
static constexpr Optional create(const T *y) {
return y ? Optional(*y) : Optional();
}
Optional &operator=(const T &y) {
Storage = y;
return *this;
}
Optional &operator=(const Optional &O) = default;
void reset() { Storage.reset(); }
constexpr const T *getPointer() const { return &Storage.getValue(); }
T *getPointer() { return &Storage.getValue(); }
constexpr const T &getValue() const LLVM_LVALUE_FUNCTION {
return Storage.getValue();
}
T &getValue() LLVM_LVALUE_FUNCTION { return Storage.getValue(); }
constexpr explicit operator bool() const { return hasValue(); }
constexpr bool hasValue() const { return Storage.hasValue(); }
constexpr const T *operator->() const { return getPointer(); }
T *operator->() { return getPointer(); }
constexpr const T &operator*() const LLVM_LVALUE_FUNCTION {
return getValue();
}
T &operator*() LLVM_LVALUE_FUNCTION { return getValue(); }
template <typename U>
constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
return hasValue() ? getValue() : std::forward<U>(value);
}
/// Apply a function to the value if present; otherwise return None.
template <class Function>
auto map(const Function &F) const LLVM_LVALUE_FUNCTION
-> Optional<decltype(F(getValue()))> {
if (*this) return F(getValue());
return None;
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
T &&getValue() && { return std::move(Storage.getValue()); }
T &&operator*() && { return std::move(Storage.getValue()); }
template <typename U>
T getValueOr(U &&value) && {
return hasValue() ? std::move(getValue()) : std::forward<U>(value);
}
/// Apply a function to the value if present; otherwise return None.
template <class Function>
auto map(const Function &F) &&
-> Optional<decltype(F(std::move(*this).getValue()))> {
if (*this) return F(std::move(*this).getValue());
return None;
}
#endif
};
template <class T> llvm::hash_code hash_value(const Optional<T> &O) {
return O ? hash_combine(true, *O) : hash_value(false);
}
template <typename T, typename U>
constexpr bool operator==(const Optional<T> &X, const Optional<U> &Y) {
if (X && Y)
return *X == *Y;
return X.hasValue() == Y.hasValue();
}
template <typename T, typename U>
constexpr bool operator!=(const Optional<T> &X, const Optional<U> &Y) {
return !(X == Y);
}
template <typename T, typename U>
constexpr bool operator<(const Optional<T> &X, const Optional<U> &Y) {
if (X && Y)
return *X < *Y;
return X.hasValue() < Y.hasValue();
}
template <typename T, typename U>
constexpr bool operator<=(const Optional<T> &X, const Optional<U> &Y) {
return !(Y < X);
}
template <typename T, typename U>
constexpr bool operator>(const Optional<T> &X, const Optional<U> &Y) {
return Y < X;
}
template <typename T, typename U>
constexpr bool operator>=(const Optional<T> &X, const Optional<U> &Y) {
return !(X < Y);
}
template <typename T>
constexpr bool operator==(const Optional<T> &X, NoneType) {
return !X;
}
template <typename T>
constexpr bool operator==(NoneType, const Optional<T> &X) {
return X == None;
}
template <typename T>
constexpr bool operator!=(const Optional<T> &X, NoneType) {
return !(X == None);
}
template <typename T>
constexpr bool operator!=(NoneType, const Optional<T> &X) {
return X != None;
}
template <typename T> constexpr bool operator<(const Optional<T> &X, NoneType) {
return false;
}
template <typename T> constexpr bool operator<(NoneType, const Optional<T> &X) {
return X.hasValue();
}
template <typename T>
constexpr bool operator<=(const Optional<T> &X, NoneType) {
return !(None < X);
}
template <typename T>
constexpr bool operator<=(NoneType, const Optional<T> &X) {
return !(X < None);
}
template <typename T> constexpr bool operator>(const Optional<T> &X, NoneType) {
return None < X;
}
template <typename T> constexpr bool operator>(NoneType, const Optional<T> &X) {
return X < None;
}
template <typename T>
constexpr bool operator>=(const Optional<T> &X, NoneType) {
return None <= X;
}
template <typename T>
constexpr bool operator>=(NoneType, const Optional<T> &X) {
return X <= None;
}
template <typename T>
constexpr bool operator==(const Optional<T> &X, const T &Y) {
return X && *X == Y;
}
template <typename T>
constexpr bool operator==(const T &X, const Optional<T> &Y) {
return Y && X == *Y;
}
template <typename T>
constexpr bool operator!=(const Optional<T> &X, const T &Y) {
return !(X == Y);
}
template <typename T>
constexpr bool operator!=(const T &X, const Optional<T> &Y) {
return !(X == Y);
}
template <typename T>
constexpr bool operator<(const Optional<T> &X, const T &Y) {
return !X || *X < Y;
}
template <typename T>
constexpr bool operator<(const T &X, const Optional<T> &Y) {
return Y && X < *Y;
}
template <typename T>
constexpr bool operator<=(const Optional<T> &X, const T &Y) {
return !(Y < X);
}
template <typename T>
constexpr bool operator<=(const T &X, const Optional<T> &Y) {
return !(Y < X);
}
template <typename T>
constexpr bool operator>(const Optional<T> &X, const T &Y) {
return Y < X;
}
template <typename T>
constexpr bool operator>(const T &X, const Optional<T> &Y) {
return Y < X;
}
template <typename T>
constexpr bool operator>=(const Optional<T> &X, const T &Y) {
return !(X < Y);
}
template <typename T>
constexpr bool operator>=(const T &X, const Optional<T> &Y) {
return !(X < Y);
}
raw_ostream &operator<<(raw_ostream &OS, NoneType);
template <typename T, typename = decltype(std::declval<raw_ostream &>()
<< std::declval<const T &>())>
raw_ostream &operator<<(raw_ostream &OS, const Optional<T> &O) {
if (O)
OS << *O;
else
OS << None;
return OS;
}
} // end namespace llvm
#endif // LLVM_ADT_OPTIONAL_H