298 lines
10 KiB
C
298 lines
10 KiB
C
|
//===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Generic implementation of equivalence classes through the use Tarjan's
|
||
|
// efficient union-find algorithm.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_ADT_EQUIVALENCECLASSES_H
|
||
|
#define LLVM_ADT_EQUIVALENCECLASSES_H
|
||
|
|
||
|
#include <cassert>
|
||
|
#include <cstddef>
|
||
|
#include <cstdint>
|
||
|
#include <iterator>
|
||
|
#include <set>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
/// EquivalenceClasses - This represents a collection of equivalence classes and
|
||
|
/// supports three efficient operations: insert an element into a class of its
|
||
|
/// own, union two classes, and find the class for a given element. In
|
||
|
/// addition to these modification methods, it is possible to iterate over all
|
||
|
/// of the equivalence classes and all of the elements in a class.
|
||
|
///
|
||
|
/// This implementation is an efficient implementation that only stores one copy
|
||
|
/// of the element being indexed per entry in the set, and allows any arbitrary
|
||
|
/// type to be indexed (as long as it can be ordered with operator<).
|
||
|
///
|
||
|
/// Here is a simple example using integers:
|
||
|
///
|
||
|
/// \code
|
||
|
/// EquivalenceClasses<int> EC;
|
||
|
/// EC.unionSets(1, 2); // insert 1, 2 into the same set
|
||
|
/// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets
|
||
|
/// EC.unionSets(5, 1); // merge the set for 1 with 5's set.
|
||
|
///
|
||
|
/// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
|
||
|
/// I != E; ++I) { // Iterate over all of the equivalence sets.
|
||
|
/// if (!I->isLeader()) continue; // Ignore non-leader sets.
|
||
|
/// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
|
||
|
/// MI != EC.member_end(); ++MI) // Loop over members in this set.
|
||
|
/// cerr << *MI << " "; // Print member.
|
||
|
/// cerr << "\n"; // Finish set.
|
||
|
/// }
|
||
|
/// \endcode
|
||
|
///
|
||
|
/// This example prints:
|
||
|
/// 4
|
||
|
/// 5 1 2
|
||
|
///
|
||
|
template <class ElemTy>
|
||
|
class EquivalenceClasses {
|
||
|
/// ECValue - The EquivalenceClasses data structure is just a set of these.
|
||
|
/// Each of these represents a relation for a value. First it stores the
|
||
|
/// value itself, which provides the ordering that the set queries. Next, it
|
||
|
/// provides a "next pointer", which is used to enumerate all of the elements
|
||
|
/// in the unioned set. Finally, it defines either a "end of list pointer" or
|
||
|
/// "leader pointer" depending on whether the value itself is a leader. A
|
||
|
/// "leader pointer" points to the node that is the leader for this element,
|
||
|
/// if the node is not a leader. A "end of list pointer" points to the last
|
||
|
/// node in the list of members of this list. Whether or not a node is a
|
||
|
/// leader is determined by a bit stolen from one of the pointers.
|
||
|
class ECValue {
|
||
|
friend class EquivalenceClasses;
|
||
|
|
||
|
mutable const ECValue *Leader, *Next;
|
||
|
ElemTy Data;
|
||
|
|
||
|
// ECValue ctor - Start out with EndOfList pointing to this node, Next is
|
||
|
// Null, isLeader = true.
|
||
|
ECValue(const ElemTy &Elt)
|
||
|
: Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
|
||
|
|
||
|
const ECValue *getLeader() const {
|
||
|
if (isLeader()) return this;
|
||
|
if (Leader->isLeader()) return Leader;
|
||
|
// Path compression.
|
||
|
return Leader = Leader->getLeader();
|
||
|
}
|
||
|
|
||
|
const ECValue *getEndOfList() const {
|
||
|
assert(isLeader() && "Cannot get the end of a list for a non-leader!");
|
||
|
return Leader;
|
||
|
}
|
||
|
|
||
|
void setNext(const ECValue *NewNext) const {
|
||
|
assert(getNext() == nullptr && "Already has a next pointer!");
|
||
|
Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
|
||
|
Data(RHS.Data) {
|
||
|
// Only support copying of singleton nodes.
|
||
|
assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
|
||
|
}
|
||
|
|
||
|
bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
|
||
|
|
||
|
bool isLeader() const { return (intptr_t)Next & 1; }
|
||
|
const ElemTy &getData() const { return Data; }
|
||
|
|
||
|
const ECValue *getNext() const {
|
||
|
return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
|
||
|
}
|
||
|
|
||
|
template<typename T>
|
||
|
bool operator<(const T &Val) const { return Data < Val; }
|
||
|
};
|
||
|
|
||
|
/// TheMapping - This implicitly provides a mapping from ElemTy values to the
|
||
|
/// ECValues, it just keeps the key as part of the value.
|
||
|
std::set<ECValue> TheMapping;
|
||
|
|
||
|
public:
|
||
|
EquivalenceClasses() = default;
|
||
|
EquivalenceClasses(const EquivalenceClasses &RHS) {
|
||
|
operator=(RHS);
|
||
|
}
|
||
|
|
||
|
const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
|
||
|
TheMapping.clear();
|
||
|
for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
|
||
|
if (I->isLeader()) {
|
||
|
member_iterator MI = RHS.member_begin(I);
|
||
|
member_iterator LeaderIt = member_begin(insert(*MI));
|
||
|
for (++MI; MI != member_end(); ++MI)
|
||
|
unionSets(LeaderIt, member_begin(insert(*MI)));
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
// Inspection methods
|
||
|
//
|
||
|
|
||
|
/// iterator* - Provides a way to iterate over all values in the set.
|
||
|
using iterator = typename std::set<ECValue>::const_iterator;
|
||
|
|
||
|
iterator begin() const { return TheMapping.begin(); }
|
||
|
iterator end() const { return TheMapping.end(); }
|
||
|
|
||
|
bool empty() const { return TheMapping.empty(); }
|
||
|
|
||
|
/// member_* Iterate over the members of an equivalence class.
|
||
|
class member_iterator;
|
||
|
member_iterator member_begin(iterator I) const {
|
||
|
// Only leaders provide anything to iterate over.
|
||
|
return member_iterator(I->isLeader() ? &*I : nullptr);
|
||
|
}
|
||
|
member_iterator member_end() const {
|
||
|
return member_iterator(nullptr);
|
||
|
}
|
||
|
|
||
|
/// findValue - Return an iterator to the specified value. If it does not
|
||
|
/// exist, end() is returned.
|
||
|
iterator findValue(const ElemTy &V) const {
|
||
|
return TheMapping.find(V);
|
||
|
}
|
||
|
|
||
|
/// getLeaderValue - Return the leader for the specified value that is in the
|
||
|
/// set. It is an error to call this method for a value that is not yet in
|
||
|
/// the set. For that, call getOrInsertLeaderValue(V).
|
||
|
const ElemTy &getLeaderValue(const ElemTy &V) const {
|
||
|
member_iterator MI = findLeader(V);
|
||
|
assert(MI != member_end() && "Value is not in the set!");
|
||
|
return *MI;
|
||
|
}
|
||
|
|
||
|
/// getOrInsertLeaderValue - Return the leader for the specified value that is
|
||
|
/// in the set. If the member is not in the set, it is inserted, then
|
||
|
/// returned.
|
||
|
const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
|
||
|
member_iterator MI = findLeader(insert(V));
|
||
|
assert(MI != member_end() && "Value is not in the set!");
|
||
|
return *MI;
|
||
|
}
|
||
|
|
||
|
/// getNumClasses - Return the number of equivalence classes in this set.
|
||
|
/// Note that this is a linear time operation.
|
||
|
unsigned getNumClasses() const {
|
||
|
unsigned NC = 0;
|
||
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
||
|
if (I->isLeader()) ++NC;
|
||
|
return NC;
|
||
|
}
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
// Mutation methods
|
||
|
|
||
|
/// insert - Insert a new value into the union/find set, ignoring the request
|
||
|
/// if the value already exists.
|
||
|
iterator insert(const ElemTy &Data) {
|
||
|
return TheMapping.insert(ECValue(Data)).first;
|
||
|
}
|
||
|
|
||
|
/// findLeader - Given a value in the set, return a member iterator for the
|
||
|
/// equivalence class it is in. This does the path-compression part that
|
||
|
/// makes union-find "union findy". This returns an end iterator if the value
|
||
|
/// is not in the equivalence class.
|
||
|
member_iterator findLeader(iterator I) const {
|
||
|
if (I == TheMapping.end()) return member_end();
|
||
|
return member_iterator(I->getLeader());
|
||
|
}
|
||
|
member_iterator findLeader(const ElemTy &V) const {
|
||
|
return findLeader(TheMapping.find(V));
|
||
|
}
|
||
|
|
||
|
/// union - Merge the two equivalence sets for the specified values, inserting
|
||
|
/// them if they do not already exist in the equivalence set.
|
||
|
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
|
||
|
iterator V1I = insert(V1), V2I = insert(V2);
|
||
|
return unionSets(findLeader(V1I), findLeader(V2I));
|
||
|
}
|
||
|
member_iterator unionSets(member_iterator L1, member_iterator L2) {
|
||
|
assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
|
||
|
if (L1 == L2) return L1; // Unifying the same two sets, noop.
|
||
|
|
||
|
// Otherwise, this is a real union operation. Set the end of the L1 list to
|
||
|
// point to the L2 leader node.
|
||
|
const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
|
||
|
L1LV.getEndOfList()->setNext(&L2LV);
|
||
|
|
||
|
// Update L1LV's end of list pointer.
|
||
|
L1LV.Leader = L2LV.getEndOfList();
|
||
|
|
||
|
// Clear L2's leader flag:
|
||
|
L2LV.Next = L2LV.getNext();
|
||
|
|
||
|
// L2's leader is now L1.
|
||
|
L2LV.Leader = &L1LV;
|
||
|
return L1;
|
||
|
}
|
||
|
|
||
|
// isEquivalent - Return true if V1 is equivalent to V2. This can happen if
|
||
|
// V1 is equal to V2 or if they belong to one equivalence class.
|
||
|
bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
|
||
|
// Fast path: any element is equivalent to itself.
|
||
|
if (V1 == V2)
|
||
|
return true;
|
||
|
auto It = findLeader(V1);
|
||
|
return It != member_end() && It == findLeader(V2);
|
||
|
}
|
||
|
|
||
|
class member_iterator : public std::iterator<std::forward_iterator_tag,
|
||
|
const ElemTy, ptrdiff_t> {
|
||
|
friend class EquivalenceClasses;
|
||
|
|
||
|
using super = std::iterator<std::forward_iterator_tag,
|
||
|
const ElemTy, ptrdiff_t>;
|
||
|
|
||
|
const ECValue *Node;
|
||
|
|
||
|
public:
|
||
|
using size_type = size_t;
|
||
|
using pointer = typename super::pointer;
|
||
|
using reference = typename super::reference;
|
||
|
|
||
|
explicit member_iterator() = default;
|
||
|
explicit member_iterator(const ECValue *N) : Node(N) {}
|
||
|
|
||
|
reference operator*() const {
|
||
|
assert(Node != nullptr && "Dereferencing end()!");
|
||
|
return Node->getData();
|
||
|
}
|
||
|
pointer operator->() const { return &operator*(); }
|
||
|
|
||
|
member_iterator &operator++() {
|
||
|
assert(Node != nullptr && "++'d off the end of the list!");
|
||
|
Node = Node->getNext();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
member_iterator operator++(int) { // postincrement operators.
|
||
|
member_iterator tmp = *this;
|
||
|
++*this;
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
bool operator==(const member_iterator &RHS) const {
|
||
|
return Node == RHS.Node;
|
||
|
}
|
||
|
bool operator!=(const member_iterator &RHS) const {
|
||
|
return Node != RHS.Node;
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_ADT_EQUIVALENCECLASSES_H
|