894 lines
31 KiB
C++
894 lines
31 KiB
C++
|
///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This tablegen backend emits code for use by the "fast" instruction
|
||
|
// selection algorithm. See the comments at the top of
|
||
|
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
|
||
|
//
|
||
|
// This file scans through the target's tablegen instruction-info files
|
||
|
// and extracts instructions with obvious-looking patterns, and it emits
|
||
|
// code to look up these instructions by type and operator.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "CodeGenDAGPatterns.h"
|
||
|
#include "llvm/ADT/StringSwitch.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/ErrorHandling.h"
|
||
|
#include "llvm/TableGen/Error.h"
|
||
|
#include "llvm/TableGen/Record.h"
|
||
|
#include "llvm/TableGen/TableGenBackend.h"
|
||
|
#include <utility>
|
||
|
using namespace llvm;
|
||
|
|
||
|
|
||
|
/// InstructionMemo - This class holds additional information about an
|
||
|
/// instruction needed to emit code for it.
|
||
|
///
|
||
|
namespace {
|
||
|
struct InstructionMemo {
|
||
|
std::string Name;
|
||
|
const CodeGenRegisterClass *RC;
|
||
|
std::string SubRegNo;
|
||
|
std::vector<std::string> PhysRegs;
|
||
|
std::string PredicateCheck;
|
||
|
|
||
|
InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
|
||
|
std::string SubRegNo, std::vector<std::string> PhysRegs,
|
||
|
std::string PredicateCheck)
|
||
|
: Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
|
||
|
PhysRegs(std::move(PhysRegs)),
|
||
|
PredicateCheck(std::move(PredicateCheck)) {}
|
||
|
|
||
|
// Make sure we do not copy InstructionMemo.
|
||
|
InstructionMemo(const InstructionMemo &Other) = delete;
|
||
|
InstructionMemo(InstructionMemo &&Other) = default;
|
||
|
};
|
||
|
} // End anonymous namespace
|
||
|
|
||
|
/// ImmPredicateSet - This uniques predicates (represented as a string) and
|
||
|
/// gives them unique (small) integer ID's that start at 0.
|
||
|
namespace {
|
||
|
class ImmPredicateSet {
|
||
|
DenseMap<TreePattern *, unsigned> ImmIDs;
|
||
|
std::vector<TreePredicateFn> PredsByName;
|
||
|
public:
|
||
|
|
||
|
unsigned getIDFor(TreePredicateFn Pred) {
|
||
|
unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
|
||
|
if (Entry == 0) {
|
||
|
PredsByName.push_back(Pred);
|
||
|
Entry = PredsByName.size();
|
||
|
}
|
||
|
return Entry-1;
|
||
|
}
|
||
|
|
||
|
const TreePredicateFn &getPredicate(unsigned i) {
|
||
|
assert(i < PredsByName.size());
|
||
|
return PredsByName[i];
|
||
|
}
|
||
|
|
||
|
typedef std::vector<TreePredicateFn>::const_iterator iterator;
|
||
|
iterator begin() const { return PredsByName.begin(); }
|
||
|
iterator end() const { return PredsByName.end(); }
|
||
|
|
||
|
};
|
||
|
} // End anonymous namespace
|
||
|
|
||
|
/// OperandsSignature - This class holds a description of a list of operand
|
||
|
/// types. It has utility methods for emitting text based on the operands.
|
||
|
///
|
||
|
namespace {
|
||
|
struct OperandsSignature {
|
||
|
class OpKind {
|
||
|
enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
|
||
|
char Repr;
|
||
|
public:
|
||
|
|
||
|
OpKind() : Repr(OK_Invalid) {}
|
||
|
|
||
|
bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
|
||
|
bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
|
||
|
|
||
|
static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
|
||
|
static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
|
||
|
static OpKind getImm(unsigned V) {
|
||
|
assert((unsigned)OK_Imm+V < 128 &&
|
||
|
"Too many integer predicates for the 'Repr' char");
|
||
|
OpKind K; K.Repr = OK_Imm+V; return K;
|
||
|
}
|
||
|
|
||
|
bool isReg() const { return Repr == OK_Reg; }
|
||
|
bool isFP() const { return Repr == OK_FP; }
|
||
|
bool isImm() const { return Repr >= OK_Imm; }
|
||
|
|
||
|
unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
|
||
|
|
||
|
void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
|
||
|
bool StripImmCodes) const {
|
||
|
if (isReg())
|
||
|
OS << 'r';
|
||
|
else if (isFP())
|
||
|
OS << 'f';
|
||
|
else {
|
||
|
OS << 'i';
|
||
|
if (!StripImmCodes)
|
||
|
if (unsigned Code = getImmCode())
|
||
|
OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
SmallVector<OpKind, 3> Operands;
|
||
|
|
||
|
bool operator<(const OperandsSignature &O) const {
|
||
|
return Operands < O.Operands;
|
||
|
}
|
||
|
bool operator==(const OperandsSignature &O) const {
|
||
|
return Operands == O.Operands;
|
||
|
}
|
||
|
|
||
|
bool empty() const { return Operands.empty(); }
|
||
|
|
||
|
bool hasAnyImmediateCodes() const {
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
||
|
if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// getWithoutImmCodes - Return a copy of this with any immediate codes forced
|
||
|
/// to zero.
|
||
|
OperandsSignature getWithoutImmCodes() const {
|
||
|
OperandsSignature Result;
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
||
|
if (!Operands[i].isImm())
|
||
|
Result.Operands.push_back(Operands[i]);
|
||
|
else
|
||
|
Result.Operands.push_back(OpKind::getImm(0));
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
|
||
|
bool EmittedAnything = false;
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
||
|
if (!Operands[i].isImm()) continue;
|
||
|
|
||
|
unsigned Code = Operands[i].getImmCode();
|
||
|
if (Code == 0) continue;
|
||
|
|
||
|
if (EmittedAnything)
|
||
|
OS << " &&\n ";
|
||
|
|
||
|
TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
|
||
|
|
||
|
// Emit the type check.
|
||
|
TreePattern *TP = PredFn.getOrigPatFragRecord();
|
||
|
ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
|
||
|
assert(VVT.isSimple() &&
|
||
|
"Cannot use variable value types with fast isel");
|
||
|
OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
|
||
|
|
||
|
OS << PredFn.getFnName() << "(imm" << i <<')';
|
||
|
EmittedAnything = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// initialize - Examine the given pattern and initialize the contents
|
||
|
/// of the Operands array accordingly. Return true if all the operands
|
||
|
/// are supported, false otherwise.
|
||
|
///
|
||
|
bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
|
||
|
MVT::SimpleValueType VT,
|
||
|
ImmPredicateSet &ImmediatePredicates,
|
||
|
const CodeGenRegisterClass *OrigDstRC) {
|
||
|
if (InstPatNode->isLeaf())
|
||
|
return false;
|
||
|
|
||
|
if (InstPatNode->getOperator()->getName() == "imm") {
|
||
|
Operands.push_back(OpKind::getImm(0));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (InstPatNode->getOperator()->getName() == "fpimm") {
|
||
|
Operands.push_back(OpKind::getFP());
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
const CodeGenRegisterClass *DstRC = nullptr;
|
||
|
|
||
|
for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
|
||
|
TreePatternNode *Op = InstPatNode->getChild(i);
|
||
|
|
||
|
// Handle imm operands specially.
|
||
|
if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
|
||
|
unsigned PredNo = 0;
|
||
|
if (!Op->getPredicateCalls().empty()) {
|
||
|
TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
|
||
|
// If there is more than one predicate weighing in on this operand
|
||
|
// then we don't handle it. This doesn't typically happen for
|
||
|
// immediates anyway.
|
||
|
if (Op->getPredicateCalls().size() > 1 ||
|
||
|
!PredFn.isImmediatePattern() || PredFn.usesOperands())
|
||
|
return false;
|
||
|
// Ignore any instruction with 'FastIselShouldIgnore', these are
|
||
|
// not needed and just bloat the fast instruction selector. For
|
||
|
// example, X86 doesn't need to generate code to match ADD16ri8 since
|
||
|
// ADD16ri will do just fine.
|
||
|
Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
|
||
|
if (Rec->getValueAsBit("FastIselShouldIgnore"))
|
||
|
return false;
|
||
|
|
||
|
PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
|
||
|
}
|
||
|
|
||
|
Operands.push_back(OpKind::getImm(PredNo));
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
|
||
|
// For now, filter out any operand with a predicate.
|
||
|
// For now, filter out any operand with multiple values.
|
||
|
if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
|
||
|
return false;
|
||
|
|
||
|
if (!Op->isLeaf()) {
|
||
|
if (Op->getOperator()->getName() == "fpimm") {
|
||
|
Operands.push_back(OpKind::getFP());
|
||
|
continue;
|
||
|
}
|
||
|
// For now, ignore other non-leaf nodes.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
assert(Op->hasConcreteType(0) && "Type infererence not done?");
|
||
|
|
||
|
// For now, all the operands must have the same type (if they aren't
|
||
|
// immediates). Note that this causes us to reject variable sized shifts
|
||
|
// on X86.
|
||
|
if (Op->getSimpleType(0) != VT)
|
||
|
return false;
|
||
|
|
||
|
DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
|
||
|
if (!OpDI)
|
||
|
return false;
|
||
|
Record *OpLeafRec = OpDI->getDef();
|
||
|
|
||
|
// For now, the only other thing we accept is register operands.
|
||
|
const CodeGenRegisterClass *RC = nullptr;
|
||
|
if (OpLeafRec->isSubClassOf("RegisterOperand"))
|
||
|
OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
|
||
|
if (OpLeafRec->isSubClassOf("RegisterClass"))
|
||
|
RC = &Target.getRegisterClass(OpLeafRec);
|
||
|
else if (OpLeafRec->isSubClassOf("Register"))
|
||
|
RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
|
||
|
else if (OpLeafRec->isSubClassOf("ValueType")) {
|
||
|
RC = OrigDstRC;
|
||
|
} else
|
||
|
return false;
|
||
|
|
||
|
// For now, this needs to be a register class of some sort.
|
||
|
if (!RC)
|
||
|
return false;
|
||
|
|
||
|
// For now, all the operands must have the same register class or be
|
||
|
// a strict subclass of the destination.
|
||
|
if (DstRC) {
|
||
|
if (DstRC != RC && !DstRC->hasSubClass(RC))
|
||
|
return false;
|
||
|
} else
|
||
|
DstRC = RC;
|
||
|
Operands.push_back(OpKind::getReg());
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void PrintParameters(raw_ostream &OS) const {
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
||
|
if (Operands[i].isReg()) {
|
||
|
OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
|
||
|
} else if (Operands[i].isImm()) {
|
||
|
OS << "uint64_t imm" << i;
|
||
|
} else if (Operands[i].isFP()) {
|
||
|
OS << "const ConstantFP *f" << i;
|
||
|
} else {
|
||
|
llvm_unreachable("Unknown operand kind!");
|
||
|
}
|
||
|
if (i + 1 != e)
|
||
|
OS << ", ";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void PrintArguments(raw_ostream &OS,
|
||
|
const std::vector<std::string> &PR) const {
|
||
|
assert(PR.size() == Operands.size());
|
||
|
bool PrintedArg = false;
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
||
|
if (PR[i] != "")
|
||
|
// Implicit physical register operand.
|
||
|
continue;
|
||
|
|
||
|
if (PrintedArg)
|
||
|
OS << ", ";
|
||
|
if (Operands[i].isReg()) {
|
||
|
OS << "Op" << i << ", Op" << i << "IsKill";
|
||
|
PrintedArg = true;
|
||
|
} else if (Operands[i].isImm()) {
|
||
|
OS << "imm" << i;
|
||
|
PrintedArg = true;
|
||
|
} else if (Operands[i].isFP()) {
|
||
|
OS << "f" << i;
|
||
|
PrintedArg = true;
|
||
|
} else {
|
||
|
llvm_unreachable("Unknown operand kind!");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void PrintArguments(raw_ostream &OS) const {
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
||
|
if (Operands[i].isReg()) {
|
||
|
OS << "Op" << i << ", Op" << i << "IsKill";
|
||
|
} else if (Operands[i].isImm()) {
|
||
|
OS << "imm" << i;
|
||
|
} else if (Operands[i].isFP()) {
|
||
|
OS << "f" << i;
|
||
|
} else {
|
||
|
llvm_unreachable("Unknown operand kind!");
|
||
|
}
|
||
|
if (i + 1 != e)
|
||
|
OS << ", ";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
|
||
|
ImmPredicateSet &ImmPredicates,
|
||
|
bool StripImmCodes = false) const {
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
||
|
if (PR[i] != "")
|
||
|
// Implicit physical register operand. e.g. Instruction::Mul expect to
|
||
|
// select to a binary op. On x86, mul may take a single operand with
|
||
|
// the other operand being implicit. We must emit something that looks
|
||
|
// like a binary instruction except for the very inner fastEmitInst_*
|
||
|
// call.
|
||
|
continue;
|
||
|
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
|
||
|
bool StripImmCodes = false) const {
|
||
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
||
|
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
|
||
|
}
|
||
|
};
|
||
|
} // End anonymous namespace
|
||
|
|
||
|
namespace {
|
||
|
class FastISelMap {
|
||
|
// A multimap is needed instead of a "plain" map because the key is
|
||
|
// the instruction's complexity (an int) and they are not unique.
|
||
|
typedef std::multimap<int, InstructionMemo> PredMap;
|
||
|
typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
|
||
|
typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
|
||
|
typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
|
||
|
typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
|
||
|
OperandsOpcodeTypeRetPredMap;
|
||
|
|
||
|
OperandsOpcodeTypeRetPredMap SimplePatterns;
|
||
|
|
||
|
// This is used to check that there are no duplicate predicates
|
||
|
typedef std::multimap<std::string, bool> PredCheckMap;
|
||
|
typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
|
||
|
typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
|
||
|
typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
|
||
|
typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
|
||
|
OperandsOpcodeTypeRetPredCheckMap;
|
||
|
|
||
|
OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
|
||
|
|
||
|
std::map<OperandsSignature, std::vector<OperandsSignature> >
|
||
|
SignaturesWithConstantForms;
|
||
|
|
||
|
StringRef InstNS;
|
||
|
ImmPredicateSet ImmediatePredicates;
|
||
|
public:
|
||
|
explicit FastISelMap(StringRef InstNS);
|
||
|
|
||
|
void collectPatterns(CodeGenDAGPatterns &CGP);
|
||
|
void printImmediatePredicates(raw_ostream &OS);
|
||
|
void printFunctionDefinitions(raw_ostream &OS);
|
||
|
private:
|
||
|
void emitInstructionCode(raw_ostream &OS,
|
||
|
const OperandsSignature &Operands,
|
||
|
const PredMap &PM,
|
||
|
const std::string &RetVTName);
|
||
|
};
|
||
|
} // End anonymous namespace
|
||
|
|
||
|
static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
|
||
|
return std::string(CGP.getSDNodeInfo(Op).getEnumName());
|
||
|
}
|
||
|
|
||
|
static std::string getLegalCName(std::string OpName) {
|
||
|
std::string::size_type pos = OpName.find("::");
|
||
|
if (pos != std::string::npos)
|
||
|
OpName.replace(pos, 2, "_");
|
||
|
return OpName;
|
||
|
}
|
||
|
|
||
|
FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
|
||
|
|
||
|
static std::string PhyRegForNode(TreePatternNode *Op,
|
||
|
const CodeGenTarget &Target) {
|
||
|
std::string PhysReg;
|
||
|
|
||
|
if (!Op->isLeaf())
|
||
|
return PhysReg;
|
||
|
|
||
|
Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
|
||
|
if (!OpLeafRec->isSubClassOf("Register"))
|
||
|
return PhysReg;
|
||
|
|
||
|
PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
|
||
|
->getValue();
|
||
|
PhysReg += "::";
|
||
|
PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
|
||
|
return PhysReg;
|
||
|
}
|
||
|
|
||
|
void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
|
||
|
const CodeGenTarget &Target = CGP.getTargetInfo();
|
||
|
|
||
|
// Scan through all the patterns and record the simple ones.
|
||
|
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
|
||
|
E = CGP.ptm_end(); I != E; ++I) {
|
||
|
const PatternToMatch &Pattern = *I;
|
||
|
|
||
|
// For now, just look at Instructions, so that we don't have to worry
|
||
|
// about emitting multiple instructions for a pattern.
|
||
|
TreePatternNode *Dst = Pattern.getDstPattern();
|
||
|
if (Dst->isLeaf()) continue;
|
||
|
Record *Op = Dst->getOperator();
|
||
|
if (!Op->isSubClassOf("Instruction"))
|
||
|
continue;
|
||
|
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
|
||
|
if (II.Operands.empty())
|
||
|
continue;
|
||
|
|
||
|
// Allow instructions to be marked as unavailable for FastISel for
|
||
|
// certain cases, i.e. an ISA has two 'and' instruction which differ
|
||
|
// by what registers they can use but are otherwise identical for
|
||
|
// codegen purposes.
|
||
|
if (II.FastISelShouldIgnore)
|
||
|
continue;
|
||
|
|
||
|
// For now, ignore multi-instruction patterns.
|
||
|
bool MultiInsts = false;
|
||
|
for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
|
||
|
TreePatternNode *ChildOp = Dst->getChild(i);
|
||
|
if (ChildOp->isLeaf())
|
||
|
continue;
|
||
|
if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
|
||
|
MultiInsts = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (MultiInsts)
|
||
|
continue;
|
||
|
|
||
|
// For now, ignore instructions where the first operand is not an
|
||
|
// output register.
|
||
|
const CodeGenRegisterClass *DstRC = nullptr;
|
||
|
std::string SubRegNo;
|
||
|
if (Op->getName() != "EXTRACT_SUBREG") {
|
||
|
Record *Op0Rec = II.Operands[0].Rec;
|
||
|
if (Op0Rec->isSubClassOf("RegisterOperand"))
|
||
|
Op0Rec = Op0Rec->getValueAsDef("RegClass");
|
||
|
if (!Op0Rec->isSubClassOf("RegisterClass"))
|
||
|
continue;
|
||
|
DstRC = &Target.getRegisterClass(Op0Rec);
|
||
|
if (!DstRC)
|
||
|
continue;
|
||
|
} else {
|
||
|
// If this isn't a leaf, then continue since the register classes are
|
||
|
// a bit too complicated for now.
|
||
|
if (!Dst->getChild(1)->isLeaf()) continue;
|
||
|
|
||
|
DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
|
||
|
if (SR)
|
||
|
SubRegNo = getQualifiedName(SR->getDef());
|
||
|
else
|
||
|
SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
|
||
|
}
|
||
|
|
||
|
// Inspect the pattern.
|
||
|
TreePatternNode *InstPatNode = Pattern.getSrcPattern();
|
||
|
if (!InstPatNode) continue;
|
||
|
if (InstPatNode->isLeaf()) continue;
|
||
|
|
||
|
// Ignore multiple result nodes for now.
|
||
|
if (InstPatNode->getNumTypes() > 1) continue;
|
||
|
|
||
|
Record *InstPatOp = InstPatNode->getOperator();
|
||
|
std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
|
||
|
MVT::SimpleValueType RetVT = MVT::isVoid;
|
||
|
if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
|
||
|
MVT::SimpleValueType VT = RetVT;
|
||
|
if (InstPatNode->getNumChildren()) {
|
||
|
assert(InstPatNode->getChild(0)->getNumTypes() == 1);
|
||
|
VT = InstPatNode->getChild(0)->getSimpleType(0);
|
||
|
}
|
||
|
|
||
|
// For now, filter out any instructions with predicates.
|
||
|
if (!InstPatNode->getPredicateCalls().empty())
|
||
|
continue;
|
||
|
|
||
|
// Check all the operands.
|
||
|
OperandsSignature Operands;
|
||
|
if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
|
||
|
DstRC))
|
||
|
continue;
|
||
|
|
||
|
std::vector<std::string> PhysRegInputs;
|
||
|
if (InstPatNode->getOperator()->getName() == "imm" ||
|
||
|
InstPatNode->getOperator()->getName() == "fpimm")
|
||
|
PhysRegInputs.push_back("");
|
||
|
else {
|
||
|
// Compute the PhysRegs used by the given pattern, and check that
|
||
|
// the mapping from the src to dst patterns is simple.
|
||
|
bool FoundNonSimplePattern = false;
|
||
|
unsigned DstIndex = 0;
|
||
|
for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
|
||
|
std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
|
||
|
if (PhysReg.empty()) {
|
||
|
if (DstIndex >= Dst->getNumChildren() ||
|
||
|
Dst->getChild(DstIndex)->getName() !=
|
||
|
InstPatNode->getChild(i)->getName()) {
|
||
|
FoundNonSimplePattern = true;
|
||
|
break;
|
||
|
}
|
||
|
++DstIndex;
|
||
|
}
|
||
|
|
||
|
PhysRegInputs.push_back(PhysReg);
|
||
|
}
|
||
|
|
||
|
if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
|
||
|
FoundNonSimplePattern = true;
|
||
|
|
||
|
if (FoundNonSimplePattern)
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Check if the operands match one of the patterns handled by FastISel.
|
||
|
std::string ManglingSuffix;
|
||
|
raw_string_ostream SuffixOS(ManglingSuffix);
|
||
|
Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
|
||
|
SuffixOS.flush();
|
||
|
if (!StringSwitch<bool>(ManglingSuffix)
|
||
|
.Cases("", "r", "rr", "ri", "i", "f", true)
|
||
|
.Default(false))
|
||
|
continue;
|
||
|
|
||
|
// Get the predicate that guards this pattern.
|
||
|
std::string PredicateCheck = Pattern.getPredicateCheck();
|
||
|
|
||
|
// Ok, we found a pattern that we can handle. Remember it.
|
||
|
InstructionMemo Memo(
|
||
|
Pattern.getDstPattern()->getOperator()->getName(),
|
||
|
DstRC,
|
||
|
SubRegNo,
|
||
|
PhysRegInputs,
|
||
|
PredicateCheck
|
||
|
);
|
||
|
|
||
|
int complexity = Pattern.getPatternComplexity(CGP);
|
||
|
|
||
|
if (SimplePatternsCheck[Operands][OpcodeName][VT]
|
||
|
[RetVT].count(PredicateCheck)) {
|
||
|
PrintFatalError(Pattern.getSrcRecord()->getLoc(),
|
||
|
"Duplicate predicate in FastISel table!");
|
||
|
}
|
||
|
SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
|
||
|
std::make_pair(PredicateCheck, true));
|
||
|
|
||
|
// Note: Instructions with the same complexity will appear in the order
|
||
|
// that they are encountered.
|
||
|
SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
|
||
|
std::move(Memo));
|
||
|
|
||
|
// If any of the operands were immediates with predicates on them, strip
|
||
|
// them down to a signature that doesn't have predicates so that we can
|
||
|
// associate them with the stripped predicate version.
|
||
|
if (Operands.hasAnyImmediateCodes()) {
|
||
|
SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
|
||
|
.push_back(Operands);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
|
||
|
if (ImmediatePredicates.begin() == ImmediatePredicates.end())
|
||
|
return;
|
||
|
|
||
|
OS << "\n// FastEmit Immediate Predicate functions.\n";
|
||
|
for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
|
||
|
E = ImmediatePredicates.end(); I != E; ++I) {
|
||
|
OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
|
||
|
OS << I->getImmediatePredicateCode() << "\n}\n";
|
||
|
}
|
||
|
|
||
|
OS << "\n\n";
|
||
|
}
|
||
|
|
||
|
void FastISelMap::emitInstructionCode(raw_ostream &OS,
|
||
|
const OperandsSignature &Operands,
|
||
|
const PredMap &PM,
|
||
|
const std::string &RetVTName) {
|
||
|
// Emit code for each possible instruction. There may be
|
||
|
// multiple if there are subtarget concerns. A reverse iterator
|
||
|
// is used to produce the ones with highest complexity first.
|
||
|
|
||
|
bool OneHadNoPredicate = false;
|
||
|
for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
|
||
|
PI != PE; ++PI) {
|
||
|
const InstructionMemo &Memo = PI->second;
|
||
|
std::string PredicateCheck = Memo.PredicateCheck;
|
||
|
|
||
|
if (PredicateCheck.empty()) {
|
||
|
assert(!OneHadNoPredicate &&
|
||
|
"Multiple instructions match and more than one had "
|
||
|
"no predicate!");
|
||
|
OneHadNoPredicate = true;
|
||
|
} else {
|
||
|
if (OneHadNoPredicate) {
|
||
|
PrintFatalError("Multiple instructions match and one with no "
|
||
|
"predicate came before one with a predicate! "
|
||
|
"name:" + Memo.Name + " predicate: " + PredicateCheck);
|
||
|
}
|
||
|
OS << " if (" + PredicateCheck + ") {\n";
|
||
|
OS << " ";
|
||
|
}
|
||
|
|
||
|
for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
|
||
|
if (Memo.PhysRegs[i] != "")
|
||
|
OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
|
||
|
<< "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
|
||
|
<< ").addReg(Op" << i << ");\n";
|
||
|
}
|
||
|
|
||
|
OS << " return fastEmitInst_";
|
||
|
if (Memo.SubRegNo.empty()) {
|
||
|
Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
|
||
|
true);
|
||
|
OS << "(" << InstNS << "::" << Memo.Name << ", ";
|
||
|
OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintArguments(OS, Memo.PhysRegs);
|
||
|
OS << ");\n";
|
||
|
} else {
|
||
|
OS << "extractsubreg(" << RetVTName
|
||
|
<< ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
|
||
|
}
|
||
|
|
||
|
if (!PredicateCheck.empty()) {
|
||
|
OS << " }\n";
|
||
|
}
|
||
|
}
|
||
|
// Return 0 if all of the possibilities had predicates but none
|
||
|
// were satisfied.
|
||
|
if (!OneHadNoPredicate)
|
||
|
OS << " return 0;\n";
|
||
|
OS << "}\n";
|
||
|
OS << "\n";
|
||
|
}
|
||
|
|
||
|
|
||
|
void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
|
||
|
// Now emit code for all the patterns that we collected.
|
||
|
for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
|
||
|
OE = SimplePatterns.end(); OI != OE; ++OI) {
|
||
|
const OperandsSignature &Operands = OI->first;
|
||
|
const OpcodeTypeRetPredMap &OTM = OI->second;
|
||
|
|
||
|
for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
|
||
|
I != E; ++I) {
|
||
|
const std::string &Opcode = I->first;
|
||
|
const TypeRetPredMap &TM = I->second;
|
||
|
|
||
|
OS << "// FastEmit functions for " << Opcode << ".\n";
|
||
|
OS << "\n";
|
||
|
|
||
|
// Emit one function for each opcode,type pair.
|
||
|
for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
|
||
|
TI != TE; ++TI) {
|
||
|
MVT::SimpleValueType VT = TI->first;
|
||
|
const RetPredMap &RM = TI->second;
|
||
|
if (RM.size() != 1) {
|
||
|
for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
|
||
|
RI != RE; ++RI) {
|
||
|
MVT::SimpleValueType RetVT = RI->first;
|
||
|
const PredMap &PM = RI->second;
|
||
|
|
||
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
|
||
|
<< getLegalCName(std::string(getName(VT))) << "_"
|
||
|
<< getLegalCName(std::string(getName(RetVT))) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(";
|
||
|
Operands.PrintParameters(OS);
|
||
|
OS << ") {\n";
|
||
|
|
||
|
emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
|
||
|
}
|
||
|
|
||
|
// Emit one function for the type that demultiplexes on return type.
|
||
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
|
||
|
<< getLegalCName(std::string(getName(VT))) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(MVT RetVT";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintParameters(OS);
|
||
|
OS << ") {\nswitch (RetVT.SimpleTy) {\n";
|
||
|
for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
|
||
|
RI != RE; ++RI) {
|
||
|
MVT::SimpleValueType RetVT = RI->first;
|
||
|
OS << " case " << getName(RetVT) << ": return fastEmit_"
|
||
|
<< getLegalCName(Opcode) << "_"
|
||
|
<< getLegalCName(std::string(getName(VT))) << "_"
|
||
|
<< getLegalCName(std::string(getName(RetVT))) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(";
|
||
|
Operands.PrintArguments(OS);
|
||
|
OS << ");\n";
|
||
|
}
|
||
|
OS << " default: return 0;\n}\n}\n\n";
|
||
|
|
||
|
} else {
|
||
|
// Non-variadic return type.
|
||
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
|
||
|
<< getLegalCName(std::string(getName(VT))) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(MVT RetVT";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintParameters(OS);
|
||
|
OS << ") {\n";
|
||
|
|
||
|
OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
|
||
|
<< ")\n return 0;\n";
|
||
|
|
||
|
const PredMap &PM = RM.begin()->second;
|
||
|
|
||
|
emitInstructionCode(OS, Operands, PM, "RetVT");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Emit one function for the opcode that demultiplexes based on the type.
|
||
|
OS << "unsigned fastEmit_"
|
||
|
<< getLegalCName(Opcode) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(MVT VT, MVT RetVT";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintParameters(OS);
|
||
|
OS << ") {\n";
|
||
|
OS << " switch (VT.SimpleTy) {\n";
|
||
|
for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
|
||
|
TI != TE; ++TI) {
|
||
|
MVT::SimpleValueType VT = TI->first;
|
||
|
std::string TypeName = std::string(getName(VT));
|
||
|
OS << " case " << TypeName << ": return fastEmit_"
|
||
|
<< getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(RetVT";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintArguments(OS);
|
||
|
OS << ");\n";
|
||
|
}
|
||
|
OS << " default: return 0;\n";
|
||
|
OS << " }\n";
|
||
|
OS << "}\n";
|
||
|
OS << "\n";
|
||
|
}
|
||
|
|
||
|
OS << "// Top-level FastEmit function.\n";
|
||
|
OS << "\n";
|
||
|
|
||
|
// Emit one function for the operand signature that demultiplexes based
|
||
|
// on opcode and type.
|
||
|
OS << "unsigned fastEmit_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(MVT VT, MVT RetVT, unsigned Opcode";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintParameters(OS);
|
||
|
OS << ") ";
|
||
|
if (!Operands.hasAnyImmediateCodes())
|
||
|
OS << "override ";
|
||
|
OS << "{\n";
|
||
|
|
||
|
// If there are any forms of this signature available that operate on
|
||
|
// constrained forms of the immediate (e.g., 32-bit sext immediate in a
|
||
|
// 64-bit operand), check them first.
|
||
|
|
||
|
std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
|
||
|
= SignaturesWithConstantForms.find(Operands);
|
||
|
if (MI != SignaturesWithConstantForms.end()) {
|
||
|
// Unique any duplicates out of the list.
|
||
|
llvm::sort(MI->second);
|
||
|
MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
|
||
|
MI->second.end());
|
||
|
|
||
|
// Check each in order it was seen. It would be nice to have a good
|
||
|
// relative ordering between them, but we're not going for optimality
|
||
|
// here.
|
||
|
for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
|
||
|
OS << " if (";
|
||
|
MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
|
||
|
OS << ")\n if (unsigned Reg = fastEmit_";
|
||
|
MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(VT, RetVT, Opcode";
|
||
|
if (!MI->second[i].empty())
|
||
|
OS << ", ";
|
||
|
MI->second[i].PrintArguments(OS);
|
||
|
OS << "))\n return Reg;\n\n";
|
||
|
}
|
||
|
|
||
|
// Done with this, remove it.
|
||
|
SignaturesWithConstantForms.erase(MI);
|
||
|
}
|
||
|
|
||
|
OS << " switch (Opcode) {\n";
|
||
|
for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
|
||
|
I != E; ++I) {
|
||
|
const std::string &Opcode = I->first;
|
||
|
|
||
|
OS << " case " << Opcode << ": return fastEmit_"
|
||
|
<< getLegalCName(Opcode) << "_";
|
||
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
||
|
OS << "(VT, RetVT";
|
||
|
if (!Operands.empty())
|
||
|
OS << ", ";
|
||
|
Operands.PrintArguments(OS);
|
||
|
OS << ");\n";
|
||
|
}
|
||
|
OS << " default: return 0;\n";
|
||
|
OS << " }\n";
|
||
|
OS << "}\n";
|
||
|
OS << "\n";
|
||
|
}
|
||
|
|
||
|
// TODO: SignaturesWithConstantForms should be empty here.
|
||
|
}
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
|
||
|
CodeGenDAGPatterns CGP(RK);
|
||
|
const CodeGenTarget &Target = CGP.getTargetInfo();
|
||
|
emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
|
||
|
Target.getName().str() + " target", OS);
|
||
|
|
||
|
// Determine the target's namespace name.
|
||
|
StringRef InstNS = Target.getInstNamespace();
|
||
|
assert(!InstNS.empty() && "Can't determine target-specific namespace!");
|
||
|
|
||
|
FastISelMap F(InstNS);
|
||
|
F.collectPatterns(CGP);
|
||
|
F.printImmediatePredicates(OS);
|
||
|
F.printFunctionDefinitions(OS);
|
||
|
}
|
||
|
|
||
|
} // End llvm namespace
|