llvm-for-llvmta/unittests/IR/LegacyPassManagerTest.cpp

794 lines
25 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- llvm/unittest/IR/LegacyPassManager.cpp - Legacy PassManager tests --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This unit test exercises the legacy pass manager infrastructure. We use the
// old names as well to ensure that the source-level compatibility is preserved
// where possible.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/AbstractCallSite.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OptBisect.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace llvm {
void initializeModuleNDMPass(PassRegistry&);
void initializeFPassPass(PassRegistry&);
void initializeCGPassPass(PassRegistry&);
void initializeLPassPass(PassRegistry&);
namespace {
// ND = no deps
// NM = no modifications
struct ModuleNDNM: public ModulePass {
public:
static char run;
static char ID;
ModuleNDNM() : ModulePass(ID) { }
bool runOnModule(Module &M) override {
run++;
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
char ModuleNDNM::ID=0;
char ModuleNDNM::run=0;
struct ModuleNDM : public ModulePass {
public:
static char run;
static char ID;
ModuleNDM() : ModulePass(ID) {}
bool runOnModule(Module &M) override {
run++;
return true;
}
};
char ModuleNDM::ID=0;
char ModuleNDM::run=0;
struct ModuleNDM2 : public ModulePass {
public:
static char run;
static char ID;
ModuleNDM2() : ModulePass(ID) {}
bool runOnModule(Module &M) override {
run++;
return true;
}
};
char ModuleNDM2::ID=0;
char ModuleNDM2::run=0;
struct ModuleDNM : public ModulePass {
public:
static char run;
static char ID;
ModuleDNM() : ModulePass(ID) {
initializeModuleNDMPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
run++;
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ModuleNDM>();
AU.setPreservesAll();
}
};
char ModuleDNM::ID=0;
char ModuleDNM::run=0;
template<typename P>
struct PassTestBase : public P {
protected:
static int runc;
static bool initialized;
static bool finalized;
int allocated;
void run() {
EXPECT_TRUE(initialized);
EXPECT_FALSE(finalized);
EXPECT_EQ(0, allocated);
allocated++;
runc++;
}
public:
static char ID;
static void finishedOK(int run) {
EXPECT_GT(runc, 0);
EXPECT_TRUE(initialized);
EXPECT_TRUE(finalized);
EXPECT_EQ(run, runc);
}
PassTestBase() : P(ID), allocated(0) {
initialized = false;
finalized = false;
runc = 0;
}
void releaseMemory() override {
EXPECT_GT(runc, 0);
EXPECT_GT(allocated, 0);
allocated--;
}
};
template<typename P> char PassTestBase<P>::ID;
template<typename P> int PassTestBase<P>::runc;
template<typename P> bool PassTestBase<P>::initialized;
template<typename P> bool PassTestBase<P>::finalized;
template<typename T, typename P>
struct PassTest : public PassTestBase<P> {
public:
#ifndef _MSC_VER // MSVC complains that Pass is not base class.
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
#endif
bool doInitialization(T &t) override {
EXPECT_FALSE(PassTestBase<P>::initialized);
PassTestBase<P>::initialized = true;
return false;
}
bool doFinalization(T &t) override {
EXPECT_FALSE(PassTestBase<P>::finalized);
PassTestBase<P>::finalized = true;
EXPECT_EQ(0, PassTestBase<P>::allocated);
return false;
}
};
struct CGPass : public PassTest<CallGraph, CallGraphSCCPass> {
public:
CGPass() {
initializeCGPassPass(*PassRegistry::getPassRegistry());
}
bool runOnSCC(CallGraphSCC &SCMM) override {
run();
return false;
}
};
struct FPass : public PassTest<Module, FunctionPass> {
public:
bool runOnFunction(Function &F) override {
// FIXME: PR4112
// EXPECT_TRUE(getAnalysisIfAvailable<DataLayout>());
run();
return false;
}
};
struct LPass : public PassTestBase<LoopPass> {
private:
static int initcount;
static int fincount;
public:
LPass() {
initializeLPassPass(*PassRegistry::getPassRegistry());
initcount = 0; fincount=0;
EXPECT_FALSE(initialized);
}
static void finishedOK(int run, int finalized) {
PassTestBase<LoopPass>::finishedOK(run);
EXPECT_EQ(run, initcount);
EXPECT_EQ(finalized, fincount);
}
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
bool doInitialization(Loop* L, LPPassManager &LPM) override {
initialized = true;
initcount++;
return false;
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
run();
return false;
}
bool doFinalization() override {
fincount++;
finalized = true;
return false;
}
};
int LPass::initcount=0;
int LPass::fincount=0;
struct OnTheFlyTest: public ModulePass {
public:
static char ID;
OnTheFlyTest() : ModulePass(ID) {
initializeFPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
for (Module::iterator I=M.begin(),E=M.end(); I != E; ++I) {
Function &F = *I;
{
SCOPED_TRACE("Running on the fly function pass");
getAnalysis<FPass>(F);
}
}
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<FPass>();
}
};
char OnTheFlyTest::ID=0;
TEST(PassManager, RunOnce) {
LLVMContext Context;
Module M("test-once", Context);
struct ModuleNDNM *mNDNM = new ModuleNDNM();
struct ModuleDNM *mDNM = new ModuleDNM();
struct ModuleNDM *mNDM = new ModuleNDM();
struct ModuleNDM2 *mNDM2 = new ModuleNDM2();
mNDM->run = mNDNM->run = mDNM->run = mNDM2->run = 0;
legacy::PassManager Passes;
Passes.add(mNDM2);
Passes.add(mNDM);
Passes.add(mNDNM);
Passes.add(mDNM);
Passes.run(M);
// each pass must be run exactly once, since nothing invalidates them
EXPECT_EQ(1, mNDM->run);
EXPECT_EQ(1, mNDNM->run);
EXPECT_EQ(1, mDNM->run);
EXPECT_EQ(1, mNDM2->run);
}
TEST(PassManager, ReRun) {
LLVMContext Context;
Module M("test-rerun", Context);
struct ModuleNDNM *mNDNM = new ModuleNDNM();
struct ModuleDNM *mDNM = new ModuleDNM();
struct ModuleNDM *mNDM = new ModuleNDM();
struct ModuleNDM2 *mNDM2 = new ModuleNDM2();
mNDM->run = mNDNM->run = mDNM->run = mNDM2->run = 0;
legacy::PassManager Passes;
Passes.add(mNDM);
Passes.add(mNDNM);
Passes.add(mNDM2);// invalidates mNDM needed by mDNM
Passes.add(mDNM);
Passes.run(M);
// Some passes must be rerun because a pass that modified the
// module/function was run in between
EXPECT_EQ(2, mNDM->run);
EXPECT_EQ(1, mNDNM->run);
EXPECT_EQ(1, mNDM2->run);
EXPECT_EQ(1, mDNM->run);
}
Module *makeLLVMModule(LLVMContext &Context);
template<typename T>
void MemoryTestHelper(int run) {
LLVMContext Context;
std::unique_ptr<Module> M(makeLLVMModule(Context));
T *P = new T();
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
T::finishedOK(run);
}
template<typename T>
void MemoryTestHelper(int run, int N) {
LLVMContext Context;
Module *M = makeLLVMModule(Context);
T *P = new T();
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
T::finishedOK(run, N);
delete M;
}
TEST(PassManager, Memory) {
// SCC#1: test1->test2->test3->test1
// SCC#2: test4
// SCC#3: indirect call node
{
SCOPED_TRACE("Callgraph pass");
MemoryTestHelper<CGPass>(3);
}
{
SCOPED_TRACE("Function pass");
MemoryTestHelper<FPass>(4);// 4 functions
}
{
SCOPED_TRACE("Loop pass");
MemoryTestHelper<LPass>(2, 1); //2 loops, 1 function
}
}
TEST(PassManager, MemoryOnTheFly) {
LLVMContext Context;
Module *M = makeLLVMModule(Context);
{
SCOPED_TRACE("Running OnTheFlyTest");
struct OnTheFlyTest *O = new OnTheFlyTest();
legacy::PassManager Passes;
Passes.add(O);
Passes.run(*M);
FPass::finishedOK(4);
}
delete M;
}
// Skips or runs optional passes.
struct CustomOptPassGate : public OptPassGate {
bool Skip;
CustomOptPassGate(bool Skip) : Skip(Skip) { }
bool shouldRunPass(const Pass *P, StringRef IRDescription) override {
if (P->getPassKind() == PT_Module)
return !Skip;
return OptPassGate::shouldRunPass(P, IRDescription);
}
bool isEnabled() const override { return true; }
};
// Optional module pass.
struct ModuleOpt: public ModulePass {
char run = 0;
static char ID;
ModuleOpt() : ModulePass(ID) { }
bool runOnModule(Module &M) override {
if (!skipModule(M))
run++;
return false;
}
};
char ModuleOpt::ID=0;
TEST(PassManager, CustomOptPassGate) {
LLVMContext Context0;
LLVMContext Context1;
LLVMContext Context2;
CustomOptPassGate SkipOptionalPasses(true);
CustomOptPassGate RunOptionalPasses(false);
Module M0("custom-opt-bisect", Context0);
Module M1("custom-opt-bisect", Context1);
Module M2("custom-opt-bisect2", Context2);
struct ModuleOpt *mOpt0 = new ModuleOpt();
struct ModuleOpt *mOpt1 = new ModuleOpt();
struct ModuleOpt *mOpt2 = new ModuleOpt();
mOpt0->run = mOpt1->run = mOpt2->run = 0;
legacy::PassManager Passes0;
legacy::PassManager Passes1;
legacy::PassManager Passes2;
Passes0.add(mOpt0);
Passes1.add(mOpt1);
Passes2.add(mOpt2);
Context1.setOptPassGate(SkipOptionalPasses);
Context2.setOptPassGate(RunOptionalPasses);
Passes0.run(M0);
Passes1.run(M1);
Passes2.run(M2);
// By default optional passes are run.
EXPECT_EQ(1, mOpt0->run);
// The first context skips optional passes.
EXPECT_EQ(0, mOpt1->run);
// The second context runs optional passes.
EXPECT_EQ(1, mOpt2->run);
}
Module *makeLLVMModule(LLVMContext &Context) {
// Module Construction
Module *mod = new Module("test-mem", Context);
mod->setDataLayout("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-"
"a:0:64-s:64:64-f80:128:128");
mod->setTargetTriple("x86_64-unknown-linux-gnu");
// Type Definitions
std::vector<Type*>FuncTy_0_args;
FunctionType *FuncTy_0 = FunctionType::get(
/*Result=*/IntegerType::get(Context, 32),
/*Params=*/FuncTy_0_args,
/*isVarArg=*/false);
std::vector<Type*>FuncTy_2_args;
FuncTy_2_args.push_back(IntegerType::get(Context, 1));
FunctionType *FuncTy_2 = FunctionType::get(
/*Result=*/Type::getVoidTy(Context),
/*Params=*/FuncTy_2_args,
/*isVarArg=*/false);
// Function Declarations
Function* func_test1 = Function::Create(
/*Type=*/FuncTy_0,
/*Linkage=*/GlobalValue::ExternalLinkage,
/*Name=*/"test1", mod);
func_test1->setCallingConv(CallingConv::C);
AttributeList func_test1_PAL;
func_test1->setAttributes(func_test1_PAL);
Function* func_test2 = Function::Create(
/*Type=*/FuncTy_0,
/*Linkage=*/GlobalValue::ExternalLinkage,
/*Name=*/"test2", mod);
func_test2->setCallingConv(CallingConv::C);
AttributeList func_test2_PAL;
func_test2->setAttributes(func_test2_PAL);
Function* func_test3 = Function::Create(
/*Type=*/FuncTy_0,
/*Linkage=*/GlobalValue::InternalLinkage,
/*Name=*/"test3", mod);
func_test3->setCallingConv(CallingConv::C);
AttributeList func_test3_PAL;
func_test3->setAttributes(func_test3_PAL);
Function* func_test4 = Function::Create(
/*Type=*/FuncTy_2,
/*Linkage=*/GlobalValue::ExternalLinkage,
/*Name=*/"test4", mod);
func_test4->setCallingConv(CallingConv::C);
AttributeList func_test4_PAL;
func_test4->setAttributes(func_test4_PAL);
// Global Variable Declarations
// Constant Definitions
// Global Variable Definitions
// Function Definitions
// Function: test1 (func_test1)
{
BasicBlock *label_entry =
BasicBlock::Create(Context, "entry", func_test1, nullptr);
// Block entry (label_entry)
CallInst* int32_3 = CallInst::Create(func_test2, "", label_entry);
int32_3->setCallingConv(CallingConv::C);
int32_3->setTailCall(false);
AttributeList int32_3_PAL;
int32_3->setAttributes(int32_3_PAL);
ReturnInst::Create(Context, int32_3, label_entry);
}
// Function: test2 (func_test2)
{
BasicBlock *label_entry_5 =
BasicBlock::Create(Context, "entry", func_test2, nullptr);
// Block entry (label_entry_5)
CallInst* int32_6 = CallInst::Create(func_test3, "", label_entry_5);
int32_6->setCallingConv(CallingConv::C);
int32_6->setTailCall(false);
AttributeList int32_6_PAL;
int32_6->setAttributes(int32_6_PAL);
ReturnInst::Create(Context, int32_6, label_entry_5);
}
// Function: test3 (func_test3)
{
BasicBlock *label_entry_8 =
BasicBlock::Create(Context, "entry", func_test3, nullptr);
// Block entry (label_entry_8)
CallInst* int32_9 = CallInst::Create(func_test1, "", label_entry_8);
int32_9->setCallingConv(CallingConv::C);
int32_9->setTailCall(false);
AttributeList int32_9_PAL;
int32_9->setAttributes(int32_9_PAL);
ReturnInst::Create(Context, int32_9, label_entry_8);
}
// Function: test4 (func_test4)
{
Function::arg_iterator args = func_test4->arg_begin();
Value *int1_f = &*args++;
int1_f->setName("f");
BasicBlock *label_entry_11 =
BasicBlock::Create(Context, "entry", func_test4, nullptr);
BasicBlock *label_bb =
BasicBlock::Create(Context, "bb", func_test4, nullptr);
BasicBlock *label_bb1 =
BasicBlock::Create(Context, "bb1", func_test4, nullptr);
BasicBlock *label_return =
BasicBlock::Create(Context, "return", func_test4, nullptr);
// Block entry (label_entry_11)
auto *AI = new AllocaInst(func_test3->getType(), 0, "func3ptr",
label_entry_11);
new StoreInst(func_test3, AI, label_entry_11);
BranchInst::Create(label_bb, label_entry_11);
// Block bb (label_bb)
BranchInst::Create(label_bb, label_bb1, int1_f, label_bb);
// Block bb1 (label_bb1)
BranchInst::Create(label_bb1, label_return, int1_f, label_bb1);
// Block return (label_return)
ReturnInst::Create(Context, label_return);
}
return mod;
}
/// Split a simple function which contains only a call and a return into two
/// such that the first calls the second and the second whoever was called
/// initially.
Function *splitSimpleFunction(Function &F) {
LLVMContext &Context = F.getContext();
Function *SF = Function::Create(F.getFunctionType(), F.getLinkage(),
F.getName() + "b", F.getParent());
F.setName(F.getName() + "a");
BasicBlock *Entry = BasicBlock::Create(Context, "entry", SF, nullptr);
CallInst &CI = cast<CallInst>(F.getEntryBlock().front());
CI.clone()->insertBefore(ReturnInst::Create(Context, Entry));
CI.setCalledFunction(SF);
return SF;
}
struct CGModifierPass : public CGPass {
unsigned NumSCCs = 0;
unsigned NumFns = 0;
unsigned NumFnDecls = 0;
unsigned SetupWorked = 0;
unsigned NumExtCalledBefore = 0;
unsigned NumExtCalledAfter = 0;
CallGraphUpdater CGU;
bool runOnSCC(CallGraphSCC &SCMM) override {
++NumSCCs;
for (CallGraphNode *N : SCMM) {
if (N->getFunction()){
++NumFns;
NumFnDecls += N->getFunction()->isDeclaration();
}
}
CGPass::run();
CallGraph &CG = const_cast<CallGraph &>(SCMM.getCallGraph());
CallGraphNode *ExtCallingNode = CG.getExternalCallingNode();
NumExtCalledBefore = ExtCallingNode->size();
if (SCMM.size() <= 1)
return false;
CallGraphNode *N = *(SCMM.begin());
Function *F = N->getFunction();
Module *M = F->getParent();
Function *Test1F = M->getFunction("test1");
Function *Test2aF = M->getFunction("test2a");
Function *Test2bF = M->getFunction("test2b");
Function *Test3F = M->getFunction("test3");
auto InSCC = [&](Function *Fn) {
return llvm::any_of(SCMM, [Fn](CallGraphNode *CGN) {
return CGN->getFunction() == Fn;
});
};
if (!Test1F || !Test2aF || !Test2bF || !Test3F || !InSCC(Test1F) ||
!InSCC(Test2aF) || !InSCC(Test2bF) || !InSCC(Test3F))
return false;
CallInst *CI = dyn_cast<CallInst>(&Test1F->getEntryBlock().front());
if (!CI || CI->getCalledFunction() != Test2aF)
return false;
SetupWorked += 1;
// Create a replica of test3 and just move the blocks there.
Function *Test3FRepl = Function::Create(
/*Type=*/Test3F->getFunctionType(),
/*Linkage=*/GlobalValue::InternalLinkage,
/*Name=*/"test3repl", Test3F->getParent());
while (!Test3F->empty()) {
BasicBlock &BB = Test3F->front();
BB.removeFromParent();
BB.insertInto(Test3FRepl);
}
CGU.initialize(CG, SCMM);
// Replace test3 with the replica. This is legal as it is actually
// internal and the "capturing use" is not really capturing anything.
CGU.replaceFunctionWith(*Test3F, *Test3FRepl);
Test3F->replaceAllUsesWith(Test3FRepl);
// Rewrite the call in test1 to point to the replica of 3 not test2.
CI->setCalledFunction(Test3FRepl);
// Delete test2a and test2b and reanalyze 1 as we changed calls inside.
CGU.removeFunction(*Test2aF);
CGU.removeFunction(*Test2bF);
CGU.reanalyzeFunction(*Test1F);
return true;
}
bool doFinalization(CallGraph &CG) override {
CGU.finalize();
// We removed test2 and replaced the internal test3.
NumExtCalledAfter = CG.getExternalCallingNode()->size();
return true;
}
};
TEST(PassManager, CallGraphUpdater0) {
// SCC#1: test1->test2a->test2b->test3->test1
// SCC#2: test4
// SCC#3: test3 (the empty function declaration as we replaced it with
// test3repl when we visited SCC#1)
// SCC#4: test2a->test2b (the empty function declarations as we deleted
// these functions when we visited SCC#1)
// SCC#5: indirect call node
LLVMContext Context;
std::unique_ptr<Module> M(makeLLVMModule(Context));
ASSERT_EQ(M->getFunctionList().size(), 4U);
Function *F = M->getFunction("test2");
Function *SF = splitSimpleFunction(*F);
CallInst::Create(F, "", &*SF->getEntryBlock().getFirstInsertionPt());
ASSERT_EQ(M->getFunctionList().size(), 5U);
CGModifierPass *P = new CGModifierPass();
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
ASSERT_EQ(P->SetupWorked, 1U);
ASSERT_EQ(P->NumSCCs, 4U);
ASSERT_EQ(P->NumFns, 6U);
ASSERT_EQ(P->NumFnDecls, 1U);
ASSERT_EQ(M->getFunctionList().size(), 3U);
ASSERT_EQ(P->NumExtCalledBefore, /* test1, 2a, 2b, 3, 4 */ 5U);
ASSERT_EQ(P->NumExtCalledAfter, /* test1, 3repl, 4 */ 3U);
}
// Test for call graph SCC pass that replaces all callback call instructions
// with clones and updates CallGraph by calling CallGraph::replaceCallEdge()
// method. Test is expected to complete successfully after running pass on
// all SCCs in the test module.
struct CallbackCallsModifierPass : public CGPass {
bool runOnSCC(CallGraphSCC &SCC) override {
CGPass::run();
CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
bool Changed = false;
for (CallGraphNode *CGN : SCC) {
Function *F = CGN->getFunction();
if (!F || F->isDeclaration())
continue;
SmallVector<CallBase *, 4u> Calls;
for (Use &U : F->uses()) {
AbstractCallSite ACS(&U);
if (!ACS || !ACS.isCallbackCall() || !ACS.isCallee(&U))
continue;
Calls.push_back(cast<CallBase>(ACS.getInstruction()));
}
if (Calls.empty())
continue;
for (CallBase *OldCB : Calls) {
CallGraphNode *CallerCGN = CG[OldCB->getParent()->getParent()];
assert(any_of(*CallerCGN,
[CGN](const CallGraphNode::CallRecord &CallRecord) {
return CallRecord.second == CGN;
}) &&
"function is not a callee");
CallBase *NewCB = cast<CallBase>(OldCB->clone());
NewCB->insertBefore(OldCB);
NewCB->takeName(OldCB);
CallerCGN->replaceCallEdge(*OldCB, *NewCB, CG[F]);
OldCB->replaceAllUsesWith(NewCB);
OldCB->eraseFromParent();
}
Changed = true;
}
return Changed;
}
};
TEST(PassManager, CallbackCallsModifier0) {
LLVMContext Context;
const char *IR = "define void @foo() {\n"
" call void @broker(void (i8*)* @callback0, i8* null)\n"
" call void @broker(void (i8*)* @callback1, i8* null)\n"
" ret void\n"
"}\n"
"\n"
"declare !callback !0 void @broker(void (i8*)*, i8*)\n"
"\n"
"define internal void @callback0(i8* %arg) {\n"
" ret void\n"
"}\n"
"\n"
"define internal void @callback1(i8* %arg) {\n"
" ret void\n"
"}\n"
"\n"
"!0 = !{!1}\n"
"!1 = !{i64 0, i64 1, i1 false}";
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(IR, Err, Context);
if (!M)
Err.print("LegacyPassManagerTest", errs());
CallbackCallsModifierPass *P = new CallbackCallsModifierPass();
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
}
}
}
INITIALIZE_PASS(ModuleNDM, "mndm", "mndm", false, false)
INITIALIZE_PASS_BEGIN(CGPass, "cgp","cgp", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(CGPass, "cgp","cgp", false, false)
INITIALIZE_PASS(FPass, "fp","fp", false, false)
INITIALIZE_PASS_BEGIN(LPass, "lp","lp", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LPass, "lp","lp", false, false)