llvm-for-llvmta/unittests/CodeGen/GlobalISel/PatternMatchTest.cpp

530 lines
16 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- PatternMatchTest.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GISelMITest.h"
#include "llvm/CodeGen/GlobalISel/ConstantFoldingMIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MIRParser/MIRParser.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
TEST_F(AArch64GISelMITest, MatchIntConstant) {
setUp();
if (!TM)
return;
auto MIBCst = B.buildConstant(LLT::scalar(64), 42);
int64_t Cst;
bool match = mi_match(MIBCst.getReg(0), *MRI, m_ICst(Cst));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 42);
}
TEST_F(AArch64GISelMITest, MatchBinaryOp) {
setUp();
if (!TM)
return;
LLT s32 = LLT::scalar(32);
LLT s64 = LLT::scalar(64);
LLT p0 = LLT::pointer(0, 64);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
// Test case for no bind.
bool match =
mi_match(MIBAdd.getReg(0), *MRI, m_GAdd(m_Reg(), m_Reg()));
EXPECT_TRUE(match);
Register Src0, Src1, Src2;
match = mi_match(MIBAdd.getReg(0), *MRI,
m_GAdd(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Build MUL(ADD %0, %1), %2
auto MIBMul = B.buildMul(s64, MIBAdd, Copies[2]);
// Try to match MUL.
match = mi_match(MIBMul.getReg(0), *MRI,
m_GMul(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBAdd.getReg(0));
EXPECT_EQ(Src1, Copies[2]);
// Try to match MUL(ADD)
match = mi_match(MIBMul.getReg(0), *MRI,
m_GMul(m_GAdd(m_Reg(Src0), m_Reg(Src1)), m_Reg(Src2)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
EXPECT_EQ(Src2, Copies[2]);
// Test Commutativity.
auto MIBMul2 = B.buildMul(s64, Copies[0], B.buildConstant(s64, 42));
// Try to match MUL(Cst, Reg) on src of MUL(Reg, Cst) to validate
// commutativity.
int64_t Cst;
match = mi_match(MIBMul2.getReg(0), *MRI,
m_GMul(m_ICst(Cst), m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 42);
EXPECT_EQ(Src0, Copies[0]);
// Make sure commutative doesn't work with something like SUB.
auto MIBSub = B.buildSub(s64, Copies[0], B.buildConstant(s64, 42));
match = mi_match(MIBSub.getReg(0), *MRI,
m_GSub(m_ICst(Cst), m_Reg(Src0)));
EXPECT_FALSE(match);
auto MIBFMul = B.buildInstr(TargetOpcode::G_FMUL, {s64},
{Copies[0], B.buildConstant(s64, 42)});
// Match and test commutativity for FMUL.
match = mi_match(MIBFMul.getReg(0), *MRI,
m_GFMul(m_ICst(Cst), m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 42);
EXPECT_EQ(Src0, Copies[0]);
// FSUB
auto MIBFSub = B.buildInstr(TargetOpcode::G_FSUB, {s64},
{Copies[0], B.buildConstant(s64, 42)});
match = mi_match(MIBFSub.getReg(0), *MRI,
m_GFSub(m_Reg(Src0), m_Reg()));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
// Build AND %0, %1
auto MIBAnd = B.buildAnd(s64, Copies[0], Copies[1]);
// Try to match AND.
match = mi_match(MIBAnd.getReg(0), *MRI,
m_GAnd(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Build OR %0, %1
auto MIBOr = B.buildOr(s64, Copies[0], Copies[1]);
// Try to match OR.
match = mi_match(MIBOr.getReg(0), *MRI,
m_GOr(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Match lshr, and make sure a different shift amount type works.
auto TruncCopy1 = B.buildTrunc(s32, Copies[1]);
auto LShr = B.buildLShr(s64, Copies[0], TruncCopy1);
match = mi_match(LShr.getReg(0), *MRI,
m_GLShr(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, TruncCopy1.getReg(0));
// Match shl, and make sure a different shift amount type works.
auto Shl = B.buildShl(s64, Copies[0], TruncCopy1);
match = mi_match(Shl.getReg(0), *MRI,
m_GShl(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, TruncCopy1.getReg(0));
// Build a G_PTR_ADD and check that we can match it.
auto PtrAdd = B.buildPtrAdd(p0, {B.buildUndef(p0)}, Copies[0]);
match = mi_match(PtrAdd.getReg(0), *MRI, m_GPtrAdd(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, PtrAdd->getOperand(1).getReg());
EXPECT_EQ(Src1, Copies[0]);
}
TEST_F(AArch64GISelMITest, MatchICmp) {
setUp();
if (!TM)
return;
const LLT s1 = LLT::scalar(1);
auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, s1, Copies[0], Copies[1]);
// Check match any predicate.
bool match =
mi_match(CmpEq.getReg(0), *MRI, m_GICmp(m_Pred(), m_Reg(), m_Reg()));
EXPECT_TRUE(match);
// Check we get the predicate and registers.
CmpInst::Predicate Pred;
Register Reg0;
Register Reg1;
match = mi_match(CmpEq.getReg(0), *MRI,
m_GICmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1)));
EXPECT_TRUE(match);
EXPECT_EQ(CmpInst::ICMP_EQ, Pred);
EXPECT_EQ(Copies[0], Reg0);
EXPECT_EQ(Copies[1], Reg1);
}
TEST_F(AArch64GISelMITest, MatchFCmp) {
setUp();
if (!TM)
return;
const LLT s1 = LLT::scalar(1);
auto CmpEq = B.buildFCmp(CmpInst::FCMP_OEQ, s1, Copies[0], Copies[1]);
// Check match any predicate.
bool match =
mi_match(CmpEq.getReg(0), *MRI, m_GFCmp(m_Pred(), m_Reg(), m_Reg()));
EXPECT_TRUE(match);
// Check we get the predicate and registers.
CmpInst::Predicate Pred;
Register Reg0;
Register Reg1;
match = mi_match(CmpEq.getReg(0), *MRI,
m_GFCmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1)));
EXPECT_TRUE(match);
EXPECT_EQ(CmpInst::FCMP_OEQ, Pred);
EXPECT_EQ(Copies[0], Reg0);
EXPECT_EQ(Copies[1], Reg1);
}
TEST_F(AArch64GISelMITest, MatchFPUnaryOp) {
setUp();
if (!TM)
return;
// Truncate s64 to s32.
LLT s32 = LLT::scalar(32);
auto Copy0s32 = B.buildFPTrunc(s32, Copies[0]);
// Match G_FABS.
auto MIBFabs = B.buildInstr(TargetOpcode::G_FABS, {s32}, {Copy0s32});
bool match =
mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg()));
EXPECT_TRUE(match);
Register Src;
auto MIBFNeg = B.buildInstr(TargetOpcode::G_FNEG, {s32}, {Copy0s32});
match = mi_match(MIBFNeg.getReg(0), *MRI, m_GFNeg(m_Reg(Src)));
EXPECT_TRUE(match);
EXPECT_EQ(Src, Copy0s32.getReg(0));
match = mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg(Src)));
EXPECT_TRUE(match);
EXPECT_EQ(Src, Copy0s32.getReg(0));
// Build and match FConstant.
auto MIBFCst = B.buildFConstant(s32, .5);
const ConstantFP *TmpFP{};
match = mi_match(MIBFCst.getReg(0), *MRI, m_GFCst(TmpFP));
EXPECT_TRUE(match);
EXPECT_TRUE(TmpFP);
APFloat APF((float).5);
auto *CFP = ConstantFP::get(Context, APF);
EXPECT_EQ(CFP, TmpFP);
// Build double float.
LLT s64 = LLT::scalar(64);
auto MIBFCst64 = B.buildFConstant(s64, .5);
const ConstantFP *TmpFP64{};
match = mi_match(MIBFCst64.getReg(0), *MRI, m_GFCst(TmpFP64));
EXPECT_TRUE(match);
EXPECT_TRUE(TmpFP64);
APFloat APF64(.5);
auto CFP64 = ConstantFP::get(Context, APF64);
EXPECT_EQ(CFP64, TmpFP64);
EXPECT_NE(TmpFP64, TmpFP);
// Build half float.
LLT s16 = LLT::scalar(16);
auto MIBFCst16 = B.buildFConstant(s16, .5);
const ConstantFP *TmpFP16{};
match = mi_match(MIBFCst16.getReg(0), *MRI, m_GFCst(TmpFP16));
EXPECT_TRUE(match);
EXPECT_TRUE(TmpFP16);
bool Ignored;
APFloat APF16(.5);
APF16.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
auto CFP16 = ConstantFP::get(Context, APF16);
EXPECT_EQ(TmpFP16, CFP16);
EXPECT_NE(TmpFP16, TmpFP);
}
TEST_F(AArch64GISelMITest, MatchExtendsTrunc) {
setUp();
if (!TM)
return;
LLT s64 = LLT::scalar(64);
LLT s32 = LLT::scalar(32);
auto MIBTrunc = B.buildTrunc(s32, Copies[0]);
auto MIBAExt = B.buildAnyExt(s64, MIBTrunc);
auto MIBZExt = B.buildZExt(s64, MIBTrunc);
auto MIBSExt = B.buildSExt(s64, MIBTrunc);
Register Src0;
bool match =
mi_match(MIBTrunc.getReg(0), *MRI, m_GTrunc(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
match =
mi_match(MIBAExt.getReg(0), *MRI, m_GAnyExt(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBTrunc.getReg(0));
match = mi_match(MIBSExt.getReg(0), *MRI, m_GSExt(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBTrunc.getReg(0));
match = mi_match(MIBZExt.getReg(0), *MRI, m_GZExt(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBTrunc.getReg(0));
// Match ext(trunc src)
match = mi_match(MIBAExt.getReg(0), *MRI,
m_GAnyExt(m_GTrunc(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
match = mi_match(MIBSExt.getReg(0), *MRI,
m_GSExt(m_GTrunc(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
match = mi_match(MIBZExt.getReg(0), *MRI,
m_GZExt(m_GTrunc(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
}
TEST_F(AArch64GISelMITest, MatchSpecificType) {
setUp();
if (!TM)
return;
// Try to match a 64bit add.
LLT s64 = LLT::scalar(64);
LLT s32 = LLT::scalar(32);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
EXPECT_FALSE(mi_match(MIBAdd.getReg(0), *MRI,
m_GAdd(m_SpecificType(s32), m_Reg())));
EXPECT_TRUE(mi_match(MIBAdd.getReg(0), *MRI,
m_GAdd(m_SpecificType(s64), m_Reg())));
// Try to match the destination type of a bitcast.
LLT v2s32 = LLT::vector(2, 32);
auto MIBCast = B.buildCast(v2s32, Copies[0]);
EXPECT_TRUE(
mi_match(MIBCast.getReg(0), *MRI, m_GBitcast(m_Reg())));
EXPECT_TRUE(
mi_match(MIBCast.getReg(0), *MRI, m_SpecificType(v2s32)));
EXPECT_TRUE(
mi_match(MIBCast.getReg(1), *MRI, m_SpecificType(s64)));
// Build a PTRToInt and INTTOPTR and match and test them.
LLT PtrTy = LLT::pointer(0, 64);
auto MIBIntToPtr = B.buildCast(PtrTy, Copies[0]);
auto MIBPtrToInt = B.buildCast(s64, MIBIntToPtr);
Register Src0;
// match the ptrtoint(inttoptr reg)
bool match = mi_match(MIBPtrToInt.getReg(0), *MRI,
m_GPtrToInt(m_GIntToPtr(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
}
TEST_F(AArch64GISelMITest, MatchCombinators) {
setUp();
if (!TM)
return;
LLT s64 = LLT::scalar(64);
LLT s32 = LLT::scalar(32);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
Register Src0, Src1;
bool match =
mi_match(MIBAdd.getReg(0), *MRI,
m_all_of(m_SpecificType(s64), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Check for s32 (which should fail).
match =
mi_match(MIBAdd.getReg(0), *MRI,
m_all_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
EXPECT_FALSE(match);
match =
mi_match(MIBAdd.getReg(0), *MRI,
m_any_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Match a case where none of the predicates hold true.
match = mi_match(
MIBAdd.getReg(0), *MRI,
m_any_of(m_SpecificType(LLT::scalar(16)), m_GSub(m_Reg(), m_Reg())));
EXPECT_FALSE(match);
}
TEST_F(AArch64GISelMITest, MatchMiscellaneous) {
setUp();
if (!TM)
return;
LLT s64 = LLT::scalar(64);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
Register Reg = MIBAdd.getReg(0);
// Only one use of Reg.
B.buildCast(LLT::pointer(0, 32), MIBAdd);
EXPECT_TRUE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))));
EXPECT_TRUE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg()))));
// Add multiple debug uses of Reg.
B.buildInstr(TargetOpcode::DBG_VALUE, {}, {Reg})->getOperand(0).setIsDebug();
B.buildInstr(TargetOpcode::DBG_VALUE, {}, {Reg})->getOperand(0).setIsDebug();
EXPECT_FALSE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))));
EXPECT_TRUE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg()))));
// Multiple non-debug uses of Reg.
B.buildCast(LLT::pointer(1, 32), MIBAdd);
EXPECT_FALSE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))));
EXPECT_FALSE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg()))));
}
TEST_F(AArch64GISelMITest, MatchSpecificConstant) {
setUp();
if (!TM)
return;
// Basic case: Can we match a G_CONSTANT with a specific value?
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
EXPECT_TRUE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICst(42)));
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICst(123)));
// Test that this works inside of a more complex pattern.
LLT s64 = LLT::scalar(64);
auto MIBAdd = B.buildAdd(s64, Copies[0], FortyTwo);
EXPECT_TRUE(mi_match(MIBAdd.getReg(2), *MRI, m_SpecificICst(42)));
// Wrong constant.
EXPECT_FALSE(mi_match(MIBAdd.getReg(2), *MRI, m_SpecificICst(123)));
// No constant on the LHS.
EXPECT_FALSE(mi_match(MIBAdd.getReg(1), *MRI, m_SpecificICst(42)));
}
TEST_F(AArch64GISelMITest, MatchZeroInt) {
setUp();
if (!TM)
return;
auto Zero = B.buildConstant(LLT::scalar(64), 0);
EXPECT_TRUE(mi_match(Zero.getReg(0), *MRI, m_ZeroInt()));
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_ZeroInt()));
}
TEST_F(AArch64GISelMITest, MatchAllOnesInt) {
setUp();
if (!TM)
return;
auto AllOnes = B.buildConstant(LLT::scalar(64), -1);
EXPECT_TRUE(mi_match(AllOnes.getReg(0), *MRI, m_AllOnesInt()));
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_AllOnesInt()));
}
TEST_F(AArch64GISelMITest, MatchNeg) {
setUp();
if (!TM)
return;
LLT s64 = LLT::scalar(64);
auto Zero = B.buildConstant(LLT::scalar(64), 0);
auto NegInst = B.buildSub(s64, Zero, Copies[0]);
Register NegatedReg;
// Match: G_SUB = 0, %Reg
EXPECT_TRUE(mi_match(NegInst.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg))));
EXPECT_EQ(NegatedReg, Copies[0]);
// Don't match: G_SUB = %Reg, 0
auto NotNegInst1 = B.buildSub(s64, Copies[0], Zero);
EXPECT_FALSE(mi_match(NotNegInst1.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg))));
// Don't match: G_SUB = 42, %Reg
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
auto NotNegInst2 = B.buildSub(s64, FortyTwo, Copies[0]);
EXPECT_FALSE(mi_match(NotNegInst2.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg))));
// Complex testcase.
// %sub = G_SUB = 0, %negated_reg
// %add = G_ADD = %x, %sub
auto AddInst = B.buildAdd(s64, Copies[1], NegInst);
NegatedReg = Register();
EXPECT_TRUE(mi_match(AddInst.getReg(2), *MRI, m_Neg(m_Reg(NegatedReg))));
EXPECT_EQ(NegatedReg, Copies[0]);
}
TEST_F(AArch64GISelMITest, MatchNot) {
setUp();
if (!TM)
return;
LLT s64 = LLT::scalar(64);
auto AllOnes = B.buildConstant(LLT::scalar(64), -1);
auto NotInst1 = B.buildXor(s64, Copies[0], AllOnes);
Register NotReg;
// Match: G_XOR %NotReg, -1
EXPECT_TRUE(mi_match(NotInst1.getReg(0), *MRI, m_Not(m_Reg(NotReg))));
EXPECT_EQ(NotReg, Copies[0]);
// Match: G_XOR -1, %NotReg
auto NotInst2 = B.buildXor(s64, AllOnes, Copies[1]);
EXPECT_TRUE(mi_match(NotInst2.getReg(0), *MRI, m_Not(m_Reg(NotReg))));
EXPECT_EQ(NotReg, Copies[1]);
// Don't match: G_XOR %NotReg, 42
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
auto WrongCst = B.buildXor(s64, Copies[0], FortyTwo);
EXPECT_FALSE(mi_match(WrongCst.getReg(0), *MRI, m_Not(m_Reg(NotReg))));
// Complex testcase.
// %xor = G_XOR %NotReg, -1
// %add = G_ADD %x, %xor
auto AddInst = B.buildAdd(s64, Copies[1], NotInst1);
NotReg = Register();
EXPECT_TRUE(mi_match(AddInst.getReg(2), *MRI, m_Not(m_Reg(NotReg))));
EXPECT_EQ(NotReg, Copies[0]);
}
} // namespace
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
initLLVM();
return RUN_ALL_TESTS();
}