llvm-for-llvmta/tools/llvm-exegesis/lib/SchedClassResolution.cpp

322 lines
14 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SchedClassResolution.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
static SmallVector<MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
const MCSubtargetInfo &STI) {
SmallVector<MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// This assumes that the ProcResDescs are sorted in topological order, which
// is guaranteed by the tablegen backend.
SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
const MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->Cycles;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles))});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
// RemainingPressure = 2.0
// We sort the subunits by pressure:
// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
// RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
static void distributePressure(float RemainingPressure,
SmallVector<uint16_t, 32> Subunits,
SmallVector<float, 32> &DensePressure) {
// Find the number of subunits with minimal pressure (they are at the
// front).
sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
return DensePressure[A] < DensePressure[B];
});
const auto getPressureForSubunit = [&DensePressure,
&Subunits](size_t I) -> float & {
return DensePressure[Subunits[I]];
};
size_t NumMinimalSU = 1;
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
++NumMinimalSU;
}
while (RemainingPressure > 0.0f) {
if (NumMinimalSU == Subunits.size()) {
// All units are minimal, just distribute evenly and be done.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Distribute the remaining pressure equally.
const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
assert(MinimalPressure < SecondToMinimalPressure);
const float Increment = SecondToMinimalPressure - MinimalPressure;
if (RemainingPressure <= NumMinimalSU * Increment) {
// There is not enough remaining pressure.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Bump all minimal pressure subunits to `SecondToMinimalPressure`.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) = SecondToMinimalPressure;
RemainingPressure -= SecondToMinimalPressure;
}
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
++NumMinimalSU;
}
}
}
std::vector<std::pair<uint16_t, float>>
computeIdealizedProcResPressure(const MCSchedModel &SM,
SmallVector<MCWriteProcResEntry, 8> WPRS) {
// DensePressure[I] is the port pressure for Proc Resource I.
SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
return A.ProcResourceIdx < B.ProcResourceIdx;
});
for (const MCWriteProcResEntry &WPR : WPRS) {
// Get units for the entry.
const MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR.ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
} else {
// This is a ProcResGroup.
SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
ProcResDesc->SubUnitsIdxBegin +
ProcResDesc->NumUnits);
distributePressure(WPR.Cycles, Subunits, DensePressure);
}
}
// Turn dense pressure into sparse pressure by removing zero entries.
std::vector<std::pair<uint16_t, float>> Pressure;
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
if (DensePressure[I] > 0.0f)
Pressure.emplace_back(I, DensePressure[I]);
}
return Pressure;
}
ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
unsigned ResolvedSchedClassId,
bool WasVariant)
: SchedClassId(ResolvedSchedClassId),
SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
WasVariant(WasVariant),
NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
IdealizedProcResPressure(computeIdealizedProcResPressure(
STI.getSchedModel(), NonRedundantWriteProcRes)) {
assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
"ResolvedSchedClass should never be variant");
}
static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
const MCInstrInfo &InstrInfo,
unsigned SchedClassId,
const MCInst &MCI) {
const auto &SM = STI.getSchedModel();
while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
SM.getProcessorID());
}
return SchedClassId;
}
std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
const MCInstrInfo &InstrInfo,
const MCInst &MCI) {
unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
.getSchedClassDesc(SchedClassId)
->isVariant();
SchedClassId =
ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
return std::make_pair(SchedClassId, WasVariant);
}
// Returns a ProxResIdx by id or name.
static unsigned findProcResIdx(const MCSubtargetInfo &STI,
const StringRef NameOrId) {
// Interpret the key as an ProcResIdx.
unsigned ProcResIdx = 0;
if (to_integer(NameOrId, ProcResIdx, 10))
return ProcResIdx;
// Interpret the key as a ProcRes name.
const auto &SchedModel = STI.getSchedModel();
for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
if (NameOrId == SchedModel.getProcResource(I)->Name)
return I;
}
return 0;
}
std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
InstructionBenchmark::ModeE Mode, const MCSubtargetInfo &STI,
ArrayRef<PerInstructionStats> Representative) const {
const size_t NumMeasurements = Representative.size();
std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
if (Mode == InstructionBenchmark::Latency) {
assert(NumMeasurements == 1 && "Latency is a single measure.");
BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
// Find the latency.
LatencyMeasure.PerInstructionValue = 0.0;
for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
const MCWriteLatencyEntry *const WLE =
STI.getWriteLatencyEntry(SCDesc, I);
LatencyMeasure.PerInstructionValue =
std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
}
} else if (Mode == InstructionBenchmark::Uops) {
for (auto I : zip(SchedClassPoint, Representative)) {
BenchmarkMeasure &Measure = std::get<0>(I);
const PerInstructionStats &Stats = std::get<1>(I);
StringRef Key = Stats.key();
uint16_t ProcResIdx = findProcResIdx(STI, Key);
if (ProcResIdx > 0) {
// Find the pressure on ProcResIdx `Key`.
const auto ProcResPressureIt =
llvm::find_if(IdealizedProcResPressure,
[ProcResIdx](const std::pair<uint16_t, float> &WPR) {
return WPR.first == ProcResIdx;
});
Measure.PerInstructionValue =
ProcResPressureIt == IdealizedProcResPressure.end()
? 0.0
: ProcResPressureIt->second;
} else if (Key == "NumMicroOps") {
Measure.PerInstructionValue = SCDesc->NumMicroOps;
} else {
errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
"name, got "
<< Key << "\n";
return {};
}
}
} else if (Mode == InstructionBenchmark::InverseThroughput) {
assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
RThroughputMeasure.PerInstructionValue =
MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
} else {
llvm_unreachable("unimplemented measurement matching mode");
}
return SchedClassPoint;
}
} // namespace exegesis
} // namespace llvm