llvm-for-llvmta/tools/clang/test/CXX/dcl.decl/dcl.meaning/dcl.array/p3.cpp

214 lines
5.9 KiB
C++
Raw Permalink Normal View History

2022-04-25 13:02:35 +02:00
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++1y -triple x86_64-linux-gnu %s
// If there is a preceding declaration of the entity *in the same scope* in
// which the bound was specified, an omitted array bound is taken to be the
// same as in that earlier declaration
// rdar://13535367
namespace test0 {
extern "C" int array[];
void declare() { extern int array[100]; }
int value1 = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
extern "C" int array[];
int value2 = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
namespace test1 {
extern "C" int array[];
void test() {
{ extern int array[100]; }
extern int array[];
int x = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
}
namespace test2 {
void declare() { extern int array[100]; }
extern int array[];
int value = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
namespace test3 {
void test() {
{ extern int array[100]; }
extern int array[];
int x = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
}
namespace test4 {
extern int array[];
void test() {
extern int array[100];
int x = sizeof(array);
}
int y = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
namespace test5 {
void test() {
extern int array[100];
extern int array[];
int x = sizeof(array);
}
}
namespace test6 {
void test() {
extern int array[100];
{
extern int array[];
int x = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
int y = sizeof(array);
extern int array[];
int z = sizeof(array);
}
}
namespace test7 {
extern int array[100];
void test() {
extern int array[];
int x = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
int y = sizeof(array);
extern int array[];
int z = sizeof(array);
}
namespace test8 {
extern int array[];
void test() {
extern int array[100];
int x = sizeof(array);
}
int y = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
extern int array[];
int z = sizeof(array); // expected-error {{invalid application of 'sizeof' to an incomplete type 'int []'}}
}
namespace dependent {
template<typename T> void f() {
extern int arr1[];
extern T arr1;
extern T arr2;
extern int arr2[];
static_assert(sizeof(arr1) == 12, "");
static_assert(sizeof(arr2) == 12, "");
// Use a failing test to ensure the type isn't considered dependent.
static_assert(sizeof(arr2) == 13, ""); // expected-error {{failed}}
}
void g() { f<int[3]>(); } // expected-note {{in instantiation of}}
template<typename T> void h1() {
extern T arr3;
{
int arr3;
{
extern int arr3[];
// Detected in template definition.
(void)sizeof(arr3); // expected-error {{incomplete}}
}
}
}
template<typename T> void h2() {
extern int arr4[3];
{
int arr4;
{
extern T arr4;
// Detected in template instantiation.
(void)sizeof(arr4); // expected-error {{incomplete}}
}
}
}
void i() {
h1<int[3]>();
h2<int[]>(); // expected-note {{in instantiation of}}
}
int arr5[3];
template<typename T> void j() {
extern T arr5;
extern T arr6;
(void)sizeof(arr5); // expected-error {{incomplete}}
(void)sizeof(arr6); // expected-error {{incomplete}}
}
int arr6[3];
void k() { j<int[]>(); } // expected-note {{in instantiation of}}
template<typename T, typename U> void l() {
extern T arrX; // expected-note {{previous}}
extern U arrX; // expected-error {{different type: 'int [4]' vs 'int [3]'}}
(void)sizeof(arrX); // expected-error {{incomplete}}
}
void m() {
l<int[], int[3]>(); // ok
l<int[3], int[]>(); // ok
l<int[3], int[3]>(); // ok
l<int[3], int[4]>(); // expected-note {{in instantiation of}}
l<int[], int[]>(); // expected-note {{in instantiation of}}
}
template<typename T> void n() {
extern T n_var; // expected-error {{redeclaration of 'n_var' with a different type: 'double' vs 'int'}} expected-note {{previous}}
extern T n_fn(); // expected-error {{functions that differ only in their return type cannot be overloaded}} expected-note {{previous}}
}
template void n<int>();
template void n<double>(); // expected-note {{in instantiation of}}
template<typename T> void o() {
extern T o_var; // expected-note {{previous}}
extern T o_fn(); // expected-note {{previous}}
}
template void o<int>();
float o_var; // expected-error {{redefinition of 'o_var' with a different type: 'float' vs 'int'}}
float o_fn(); // expected-error {{functions that differ only in their return type cannot be overloaded}}
int p_var;
int p_fn();
template<typename T> void p() {
extern T p_var;
extern T p_fn();
}
}
namespace use_outside_ns {
namespace A {
extern int a[3];
extern int b[];
extern int c[3];
void f() {
extern int a[];
extern int b[3];
}
template<typename T> void x() {
extern T c;
extern T d;
}
extern int d[3];
template void x<int[]>();
}
int w = sizeof(A::a);
int x = sizeof(A::b); // expected-error {{incomplete}}
int y = sizeof(A::c);
int z = sizeof(A::d);
namespace A {
int g() { return sizeof(a); }
int h() { return sizeof(b); } // expected-error {{incomplete}}
int i() { return sizeof(c); }
int j() { return sizeof(d); }
}
}
extern int arr[];
void f1() { extern int arr[2]; } // expected-note {{previous}}
void f2() { extern int arr[3]; } // expected-error {{different type: 'int [3]' vs 'int [2]'}}