966 lines
36 KiB
C++
966 lines
36 KiB
C++
|
//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the PredicateInfo class.
|
||
|
//
|
||
|
//===----------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/Utils/PredicateInfo.h"
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/DepthFirstIterator.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/ADT/StringExtras.h"
|
||
|
#include "llvm/Analysis/AssumptionCache.h"
|
||
|
#include "llvm/Analysis/CFG.h"
|
||
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
||
|
#include "llvm/IR/DataLayout.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/GlobalVariable.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/InstIterator.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/IR/LLVMContext.h"
|
||
|
#include "llvm/IR/Metadata.h"
|
||
|
#include "llvm/IR/Module.h"
|
||
|
#include "llvm/IR/PatternMatch.h"
|
||
|
#include "llvm/InitializePasses.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/DebugCounter.h"
|
||
|
#include "llvm/Support/FormattedStream.h"
|
||
|
#include "llvm/Transforms/Utils.h"
|
||
|
#include <algorithm>
|
||
|
#define DEBUG_TYPE "predicateinfo"
|
||
|
using namespace llvm;
|
||
|
using namespace PatternMatch;
|
||
|
|
||
|
INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
|
||
|
"PredicateInfo Printer", false, false)
|
||
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
||
|
INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
|
||
|
"PredicateInfo Printer", false, false)
|
||
|
static cl::opt<bool> VerifyPredicateInfo(
|
||
|
"verify-predicateinfo", cl::init(false), cl::Hidden,
|
||
|
cl::desc("Verify PredicateInfo in legacy printer pass."));
|
||
|
DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
|
||
|
"Controls which variables are renamed with predicateinfo");
|
||
|
|
||
|
// Maximum number of conditions considered for renaming for each branch/assume.
|
||
|
// This limits renaming of deep and/or chains.
|
||
|
static const unsigned MaxCondsPerBranch = 8;
|
||
|
|
||
|
namespace {
|
||
|
// Given a predicate info that is a type of branching terminator, get the
|
||
|
// branching block.
|
||
|
const BasicBlock *getBranchBlock(const PredicateBase *PB) {
|
||
|
assert(isa<PredicateWithEdge>(PB) &&
|
||
|
"Only branches and switches should have PHIOnly defs that "
|
||
|
"require branch blocks.");
|
||
|
return cast<PredicateWithEdge>(PB)->From;
|
||
|
}
|
||
|
|
||
|
// Given a predicate info that is a type of branching terminator, get the
|
||
|
// branching terminator.
|
||
|
static Instruction *getBranchTerminator(const PredicateBase *PB) {
|
||
|
assert(isa<PredicateWithEdge>(PB) &&
|
||
|
"Not a predicate info type we know how to get a terminator from.");
|
||
|
return cast<PredicateWithEdge>(PB)->From->getTerminator();
|
||
|
}
|
||
|
|
||
|
// Given a predicate info that is a type of branching terminator, get the
|
||
|
// edge this predicate info represents
|
||
|
const std::pair<BasicBlock *, BasicBlock *>
|
||
|
getBlockEdge(const PredicateBase *PB) {
|
||
|
assert(isa<PredicateWithEdge>(PB) &&
|
||
|
"Not a predicate info type we know how to get an edge from.");
|
||
|
const auto *PEdge = cast<PredicateWithEdge>(PB);
|
||
|
return std::make_pair(PEdge->From, PEdge->To);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
namespace llvm {
|
||
|
enum LocalNum {
|
||
|
// Operations that must appear first in the block.
|
||
|
LN_First,
|
||
|
// Operations that are somewhere in the middle of the block, and are sorted on
|
||
|
// demand.
|
||
|
LN_Middle,
|
||
|
// Operations that must appear last in a block, like successor phi node uses.
|
||
|
LN_Last
|
||
|
};
|
||
|
|
||
|
// Associate global and local DFS info with defs and uses, so we can sort them
|
||
|
// into a global domination ordering.
|
||
|
struct ValueDFS {
|
||
|
int DFSIn = 0;
|
||
|
int DFSOut = 0;
|
||
|
unsigned int LocalNum = LN_Middle;
|
||
|
// Only one of Def or Use will be set.
|
||
|
Value *Def = nullptr;
|
||
|
Use *U = nullptr;
|
||
|
// Neither PInfo nor EdgeOnly participate in the ordering
|
||
|
PredicateBase *PInfo = nullptr;
|
||
|
bool EdgeOnly = false;
|
||
|
};
|
||
|
|
||
|
// Perform a strict weak ordering on instructions and arguments.
|
||
|
static bool valueComesBefore(const Value *A, const Value *B) {
|
||
|
auto *ArgA = dyn_cast_or_null<Argument>(A);
|
||
|
auto *ArgB = dyn_cast_or_null<Argument>(B);
|
||
|
if (ArgA && !ArgB)
|
||
|
return true;
|
||
|
if (ArgB && !ArgA)
|
||
|
return false;
|
||
|
if (ArgA && ArgB)
|
||
|
return ArgA->getArgNo() < ArgB->getArgNo();
|
||
|
return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
|
||
|
}
|
||
|
|
||
|
// This compares ValueDFS structures. Doing so allows us to walk the minimum
|
||
|
// number of instructions necessary to compute our def/use ordering.
|
||
|
struct ValueDFS_Compare {
|
||
|
DominatorTree &DT;
|
||
|
ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
|
||
|
|
||
|
bool operator()(const ValueDFS &A, const ValueDFS &B) const {
|
||
|
if (&A == &B)
|
||
|
return false;
|
||
|
// The only case we can't directly compare them is when they in the same
|
||
|
// block, and both have localnum == middle. In that case, we have to use
|
||
|
// comesbefore to see what the real ordering is, because they are in the
|
||
|
// same basic block.
|
||
|
|
||
|
assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
|
||
|
"Equal DFS-in numbers imply equal out numbers");
|
||
|
bool SameBlock = A.DFSIn == B.DFSIn;
|
||
|
|
||
|
// We want to put the def that will get used for a given set of phi uses,
|
||
|
// before those phi uses.
|
||
|
// So we sort by edge, then by def.
|
||
|
// Note that only phi nodes uses and defs can come last.
|
||
|
if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
|
||
|
return comparePHIRelated(A, B);
|
||
|
|
||
|
bool isADef = A.Def;
|
||
|
bool isBDef = B.Def;
|
||
|
if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
|
||
|
return std::tie(A.DFSIn, A.LocalNum, isADef) <
|
||
|
std::tie(B.DFSIn, B.LocalNum, isBDef);
|
||
|
return localComesBefore(A, B);
|
||
|
}
|
||
|
|
||
|
// For a phi use, or a non-materialized def, return the edge it represents.
|
||
|
const std::pair<BasicBlock *, BasicBlock *>
|
||
|
getBlockEdge(const ValueDFS &VD) const {
|
||
|
if (!VD.Def && VD.U) {
|
||
|
auto *PHI = cast<PHINode>(VD.U->getUser());
|
||
|
return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
|
||
|
}
|
||
|
// This is really a non-materialized def.
|
||
|
return ::getBlockEdge(VD.PInfo);
|
||
|
}
|
||
|
|
||
|
// For two phi related values, return the ordering.
|
||
|
bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
|
||
|
BasicBlock *ASrc, *ADest, *BSrc, *BDest;
|
||
|
std::tie(ASrc, ADest) = getBlockEdge(A);
|
||
|
std::tie(BSrc, BDest) = getBlockEdge(B);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
// This function should only be used for values in the same BB, check that.
|
||
|
DomTreeNode *DomASrc = DT.getNode(ASrc);
|
||
|
DomTreeNode *DomBSrc = DT.getNode(BSrc);
|
||
|
assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
|
||
|
"DFS numbers for A should match the ones of the source block");
|
||
|
assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
|
||
|
"DFS numbers for B should match the ones of the source block");
|
||
|
assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
|
||
|
#endif
|
||
|
(void)ASrc;
|
||
|
(void)BSrc;
|
||
|
|
||
|
// Use DFS numbers to compare destination blocks, to guarantee a
|
||
|
// deterministic order.
|
||
|
DomTreeNode *DomADest = DT.getNode(ADest);
|
||
|
DomTreeNode *DomBDest = DT.getNode(BDest);
|
||
|
unsigned AIn = DomADest->getDFSNumIn();
|
||
|
unsigned BIn = DomBDest->getDFSNumIn();
|
||
|
bool isADef = A.Def;
|
||
|
bool isBDef = B.Def;
|
||
|
assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
|
||
|
"Def and U cannot be set at the same time");
|
||
|
// Now sort by edge destination and then defs before uses.
|
||
|
return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
|
||
|
}
|
||
|
|
||
|
// Get the definition of an instruction that occurs in the middle of a block.
|
||
|
Value *getMiddleDef(const ValueDFS &VD) const {
|
||
|
if (VD.Def)
|
||
|
return VD.Def;
|
||
|
// It's possible for the defs and uses to be null. For branches, the local
|
||
|
// numbering will say the placed predicaeinfos should go first (IE
|
||
|
// LN_beginning), so we won't be in this function. For assumes, we will end
|
||
|
// up here, beause we need to order the def we will place relative to the
|
||
|
// assume. So for the purpose of ordering, we pretend the def is right
|
||
|
// after the assume, because that is where we will insert the info.
|
||
|
if (!VD.U) {
|
||
|
assert(VD.PInfo &&
|
||
|
"No def, no use, and no predicateinfo should not occur");
|
||
|
assert(isa<PredicateAssume>(VD.PInfo) &&
|
||
|
"Middle of block should only occur for assumes");
|
||
|
return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
|
||
|
}
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// Return either the Def, if it's not null, or the user of the Use, if the def
|
||
|
// is null.
|
||
|
const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
|
||
|
if (Def)
|
||
|
return cast<Instruction>(Def);
|
||
|
return cast<Instruction>(U->getUser());
|
||
|
}
|
||
|
|
||
|
// This performs the necessary local basic block ordering checks to tell
|
||
|
// whether A comes before B, where both are in the same basic block.
|
||
|
bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
|
||
|
auto *ADef = getMiddleDef(A);
|
||
|
auto *BDef = getMiddleDef(B);
|
||
|
|
||
|
// See if we have real values or uses. If we have real values, we are
|
||
|
// guaranteed they are instructions or arguments. No matter what, we are
|
||
|
// guaranteed they are in the same block if they are instructions.
|
||
|
auto *ArgA = dyn_cast_or_null<Argument>(ADef);
|
||
|
auto *ArgB = dyn_cast_or_null<Argument>(BDef);
|
||
|
|
||
|
if (ArgA || ArgB)
|
||
|
return valueComesBefore(ArgA, ArgB);
|
||
|
|
||
|
auto *AInst = getDefOrUser(ADef, A.U);
|
||
|
auto *BInst = getDefOrUser(BDef, B.U);
|
||
|
return valueComesBefore(AInst, BInst);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class PredicateInfoBuilder {
|
||
|
// Used to store information about each value we might rename.
|
||
|
struct ValueInfo {
|
||
|
SmallVector<PredicateBase *, 4> Infos;
|
||
|
};
|
||
|
|
||
|
PredicateInfo &PI;
|
||
|
Function &F;
|
||
|
DominatorTree &DT;
|
||
|
AssumptionCache &AC;
|
||
|
|
||
|
// This stores info about each operand or comparison result we make copies
|
||
|
// of. The real ValueInfos start at index 1, index 0 is unused so that we
|
||
|
// can more easily detect invalid indexing.
|
||
|
SmallVector<ValueInfo, 32> ValueInfos;
|
||
|
|
||
|
// This gives the index into the ValueInfos array for a given Value. Because
|
||
|
// 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
|
||
|
// whether it returned a valid result.
|
||
|
DenseMap<Value *, unsigned int> ValueInfoNums;
|
||
|
|
||
|
// The set of edges along which we can only handle phi uses, due to critical
|
||
|
// edges.
|
||
|
DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
|
||
|
|
||
|
ValueInfo &getOrCreateValueInfo(Value *);
|
||
|
const ValueInfo &getValueInfo(Value *) const;
|
||
|
|
||
|
void processAssume(IntrinsicInst *, BasicBlock *,
|
||
|
SmallVectorImpl<Value *> &OpsToRename);
|
||
|
void processBranch(BranchInst *, BasicBlock *,
|
||
|
SmallVectorImpl<Value *> &OpsToRename);
|
||
|
void processSwitch(SwitchInst *, BasicBlock *,
|
||
|
SmallVectorImpl<Value *> &OpsToRename);
|
||
|
void renameUses(SmallVectorImpl<Value *> &OpsToRename);
|
||
|
void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
|
||
|
PredicateBase *PB);
|
||
|
|
||
|
typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
|
||
|
void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
|
||
|
Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
|
||
|
bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
|
||
|
void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
|
||
|
|
||
|
public:
|
||
|
PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
|
||
|
AssumptionCache &AC)
|
||
|
: PI(PI), F(F), DT(DT), AC(AC) {
|
||
|
// Push an empty operand info so that we can detect 0 as not finding one
|
||
|
ValueInfos.resize(1);
|
||
|
}
|
||
|
|
||
|
void buildPredicateInfo();
|
||
|
};
|
||
|
|
||
|
bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
|
||
|
const ValueDFS &VDUse) const {
|
||
|
if (Stack.empty())
|
||
|
return false;
|
||
|
// If it's a phi only use, make sure it's for this phi node edge, and that the
|
||
|
// use is in a phi node. If it's anything else, and the top of the stack is
|
||
|
// EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
|
||
|
// the defs they must go with so that we can know it's time to pop the stack
|
||
|
// when we hit the end of the phi uses for a given def.
|
||
|
if (Stack.back().EdgeOnly) {
|
||
|
if (!VDUse.U)
|
||
|
return false;
|
||
|
auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
|
||
|
if (!PHI)
|
||
|
return false;
|
||
|
// Check edge
|
||
|
BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
|
||
|
if (EdgePred != getBranchBlock(Stack.back().PInfo))
|
||
|
return false;
|
||
|
|
||
|
// Use dominates, which knows how to handle edge dominance.
|
||
|
return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
|
||
|
}
|
||
|
|
||
|
return (VDUse.DFSIn >= Stack.back().DFSIn &&
|
||
|
VDUse.DFSOut <= Stack.back().DFSOut);
|
||
|
}
|
||
|
|
||
|
void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
|
||
|
const ValueDFS &VD) {
|
||
|
while (!Stack.empty() && !stackIsInScope(Stack, VD))
|
||
|
Stack.pop_back();
|
||
|
}
|
||
|
|
||
|
// Convert the uses of Op into a vector of uses, associating global and local
|
||
|
// DFS info with each one.
|
||
|
void PredicateInfoBuilder::convertUsesToDFSOrdered(
|
||
|
Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
|
||
|
for (auto &U : Op->uses()) {
|
||
|
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
|
||
|
ValueDFS VD;
|
||
|
// Put the phi node uses in the incoming block.
|
||
|
BasicBlock *IBlock;
|
||
|
if (auto *PN = dyn_cast<PHINode>(I)) {
|
||
|
IBlock = PN->getIncomingBlock(U);
|
||
|
// Make phi node users appear last in the incoming block
|
||
|
// they are from.
|
||
|
VD.LocalNum = LN_Last;
|
||
|
} else {
|
||
|
// If it's not a phi node use, it is somewhere in the middle of the
|
||
|
// block.
|
||
|
IBlock = I->getParent();
|
||
|
VD.LocalNum = LN_Middle;
|
||
|
}
|
||
|
DomTreeNode *DomNode = DT.getNode(IBlock);
|
||
|
// It's possible our use is in an unreachable block. Skip it if so.
|
||
|
if (!DomNode)
|
||
|
continue;
|
||
|
VD.DFSIn = DomNode->getDFSNumIn();
|
||
|
VD.DFSOut = DomNode->getDFSNumOut();
|
||
|
VD.U = &U;
|
||
|
DFSOrderedSet.push_back(VD);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool shouldRename(Value *V) {
|
||
|
// Only want real values, not constants. Additionally, operands with one use
|
||
|
// are only being used in the comparison, which means they will not be useful
|
||
|
// for us to consider for predicateinfo.
|
||
|
return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
|
||
|
}
|
||
|
|
||
|
// Collect relevant operations from Comparison that we may want to insert copies
|
||
|
// for.
|
||
|
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
|
||
|
auto *Op0 = Comparison->getOperand(0);
|
||
|
auto *Op1 = Comparison->getOperand(1);
|
||
|
if (Op0 == Op1)
|
||
|
return;
|
||
|
|
||
|
CmpOperands.push_back(Op0);
|
||
|
CmpOperands.push_back(Op1);
|
||
|
}
|
||
|
|
||
|
// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
|
||
|
void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
|
||
|
Value *Op, PredicateBase *PB) {
|
||
|
auto &OperandInfo = getOrCreateValueInfo(Op);
|
||
|
if (OperandInfo.Infos.empty())
|
||
|
OpsToRename.push_back(Op);
|
||
|
PI.AllInfos.push_back(PB);
|
||
|
OperandInfo.Infos.push_back(PB);
|
||
|
}
|
||
|
|
||
|
// Process an assume instruction and place relevant operations we want to rename
|
||
|
// into OpsToRename.
|
||
|
void PredicateInfoBuilder::processAssume(
|
||
|
IntrinsicInst *II, BasicBlock *AssumeBB,
|
||
|
SmallVectorImpl<Value *> &OpsToRename) {
|
||
|
SmallVector<Value *, 4> Worklist;
|
||
|
SmallPtrSet<Value *, 4> Visited;
|
||
|
Worklist.push_back(II->getOperand(0));
|
||
|
while (!Worklist.empty()) {
|
||
|
Value *Cond = Worklist.pop_back_val();
|
||
|
if (!Visited.insert(Cond).second)
|
||
|
continue;
|
||
|
if (Visited.size() > MaxCondsPerBranch)
|
||
|
break;
|
||
|
|
||
|
Value *Op0, *Op1;
|
||
|
if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
|
||
|
Worklist.push_back(Op1);
|
||
|
Worklist.push_back(Op0);
|
||
|
}
|
||
|
|
||
|
SmallVector<Value *, 4> Values;
|
||
|
Values.push_back(Cond);
|
||
|
if (auto *Cmp = dyn_cast<CmpInst>(Cond))
|
||
|
collectCmpOps(Cmp, Values);
|
||
|
|
||
|
for (Value *V : Values) {
|
||
|
if (shouldRename(V)) {
|
||
|
auto *PA = new PredicateAssume(V, II, Cond);
|
||
|
addInfoFor(OpsToRename, V, PA);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Process a block terminating branch, and place relevant operations to be
|
||
|
// renamed into OpsToRename.
|
||
|
void PredicateInfoBuilder::processBranch(
|
||
|
BranchInst *BI, BasicBlock *BranchBB,
|
||
|
SmallVectorImpl<Value *> &OpsToRename) {
|
||
|
BasicBlock *FirstBB = BI->getSuccessor(0);
|
||
|
BasicBlock *SecondBB = BI->getSuccessor(1);
|
||
|
|
||
|
for (BasicBlock *Succ : {FirstBB, SecondBB}) {
|
||
|
bool TakenEdge = Succ == FirstBB;
|
||
|
// Don't try to insert on a self-edge. This is mainly because we will
|
||
|
// eliminate during renaming anyway.
|
||
|
if (Succ == BranchBB)
|
||
|
continue;
|
||
|
|
||
|
SmallVector<Value *, 4> Worklist;
|
||
|
SmallPtrSet<Value *, 4> Visited;
|
||
|
Worklist.push_back(BI->getCondition());
|
||
|
while (!Worklist.empty()) {
|
||
|
Value *Cond = Worklist.pop_back_val();
|
||
|
if (!Visited.insert(Cond).second)
|
||
|
continue;
|
||
|
if (Visited.size() > MaxCondsPerBranch)
|
||
|
break;
|
||
|
|
||
|
Value *Op0, *Op1;
|
||
|
if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
|
||
|
: match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
|
||
|
Worklist.push_back(Op1);
|
||
|
Worklist.push_back(Op0);
|
||
|
}
|
||
|
|
||
|
SmallVector<Value *, 4> Values;
|
||
|
Values.push_back(Cond);
|
||
|
if (auto *Cmp = dyn_cast<CmpInst>(Cond))
|
||
|
collectCmpOps(Cmp, Values);
|
||
|
|
||
|
for (Value *V : Values) {
|
||
|
if (shouldRename(V)) {
|
||
|
PredicateBase *PB =
|
||
|
new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
|
||
|
addInfoFor(OpsToRename, V, PB);
|
||
|
if (!Succ->getSinglePredecessor())
|
||
|
EdgeUsesOnly.insert({BranchBB, Succ});
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Process a block terminating switch, and place relevant operations to be
|
||
|
// renamed into OpsToRename.
|
||
|
void PredicateInfoBuilder::processSwitch(
|
||
|
SwitchInst *SI, BasicBlock *BranchBB,
|
||
|
SmallVectorImpl<Value *> &OpsToRename) {
|
||
|
Value *Op = SI->getCondition();
|
||
|
if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
|
||
|
return;
|
||
|
|
||
|
// Remember how many outgoing edges there are to every successor.
|
||
|
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
|
||
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
|
||
|
BasicBlock *TargetBlock = SI->getSuccessor(i);
|
||
|
++SwitchEdges[TargetBlock];
|
||
|
}
|
||
|
|
||
|
// Now propagate info for each case value
|
||
|
for (auto C : SI->cases()) {
|
||
|
BasicBlock *TargetBlock = C.getCaseSuccessor();
|
||
|
if (SwitchEdges.lookup(TargetBlock) == 1) {
|
||
|
PredicateSwitch *PS = new PredicateSwitch(
|
||
|
Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
|
||
|
addInfoFor(OpsToRename, Op, PS);
|
||
|
if (!TargetBlock->getSinglePredecessor())
|
||
|
EdgeUsesOnly.insert({BranchBB, TargetBlock});
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Build predicate info for our function
|
||
|
void PredicateInfoBuilder::buildPredicateInfo() {
|
||
|
DT.updateDFSNumbers();
|
||
|
// Collect operands to rename from all conditional branch terminators, as well
|
||
|
// as assume statements.
|
||
|
SmallVector<Value *, 8> OpsToRename;
|
||
|
for (auto DTN : depth_first(DT.getRootNode())) {
|
||
|
BasicBlock *BranchBB = DTN->getBlock();
|
||
|
if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
|
||
|
if (!BI->isConditional())
|
||
|
continue;
|
||
|
// Can't insert conditional information if they all go to the same place.
|
||
|
if (BI->getSuccessor(0) == BI->getSuccessor(1))
|
||
|
continue;
|
||
|
processBranch(BI, BranchBB, OpsToRename);
|
||
|
} else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
|
||
|
processSwitch(SI, BranchBB, OpsToRename);
|
||
|
}
|
||
|
}
|
||
|
for (auto &Assume : AC.assumptions()) {
|
||
|
if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
|
||
|
if (DT.isReachableFromEntry(II->getParent()))
|
||
|
processAssume(II, II->getParent(), OpsToRename);
|
||
|
}
|
||
|
// Now rename all our operations.
|
||
|
renameUses(OpsToRename);
|
||
|
}
|
||
|
|
||
|
// Create a ssa_copy declaration with custom mangling, because
|
||
|
// Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
|
||
|
// all unnamed types get mangled to the same string. We use the pointer
|
||
|
// to the type as name here, as it guarantees unique names for different
|
||
|
// types and we remove the declarations when destroying PredicateInfo.
|
||
|
// It is a workaround for PR38117, because solving it in a fully general way is
|
||
|
// tricky (FIXME).
|
||
|
static Function *getCopyDeclaration(Module *M, Type *Ty) {
|
||
|
std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
|
||
|
return cast<Function>(
|
||
|
M->getOrInsertFunction(Name,
|
||
|
getType(M->getContext(), Intrinsic::ssa_copy, Ty))
|
||
|
.getCallee());
|
||
|
}
|
||
|
|
||
|
// Given the renaming stack, make all the operands currently on the stack real
|
||
|
// by inserting them into the IR. Return the last operation's value.
|
||
|
Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
|
||
|
ValueDFSStack &RenameStack,
|
||
|
Value *OrigOp) {
|
||
|
// Find the first thing we have to materialize
|
||
|
auto RevIter = RenameStack.rbegin();
|
||
|
for (; RevIter != RenameStack.rend(); ++RevIter)
|
||
|
if (RevIter->Def)
|
||
|
break;
|
||
|
|
||
|
size_t Start = RevIter - RenameStack.rbegin();
|
||
|
// The maximum number of things we should be trying to materialize at once
|
||
|
// right now is 4, depending on if we had an assume, a branch, and both used
|
||
|
// and of conditions.
|
||
|
for (auto RenameIter = RenameStack.end() - Start;
|
||
|
RenameIter != RenameStack.end(); ++RenameIter) {
|
||
|
auto *Op =
|
||
|
RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
|
||
|
ValueDFS &Result = *RenameIter;
|
||
|
auto *ValInfo = Result.PInfo;
|
||
|
ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
|
||
|
? OrigOp
|
||
|
: (RenameStack.end() - Start - 1)->Def;
|
||
|
// For edge predicates, we can just place the operand in the block before
|
||
|
// the terminator. For assume, we have to place it right before the assume
|
||
|
// to ensure we dominate all of our uses. Always insert right before the
|
||
|
// relevant instruction (terminator, assume), so that we insert in proper
|
||
|
// order in the case of multiple predicateinfo in the same block.
|
||
|
if (isa<PredicateWithEdge>(ValInfo)) {
|
||
|
IRBuilder<> B(getBranchTerminator(ValInfo));
|
||
|
Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
|
||
|
if (IF->users().empty())
|
||
|
PI.CreatedDeclarations.insert(IF);
|
||
|
CallInst *PIC =
|
||
|
B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
|
||
|
PI.PredicateMap.insert({PIC, ValInfo});
|
||
|
Result.Def = PIC;
|
||
|
} else {
|
||
|
auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
|
||
|
assert(PAssume &&
|
||
|
"Should not have gotten here without it being an assume");
|
||
|
// Insert the predicate directly after the assume. While it also holds
|
||
|
// directly before it, assume(i1 true) is not a useful fact.
|
||
|
IRBuilder<> B(PAssume->AssumeInst->getNextNode());
|
||
|
Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
|
||
|
if (IF->users().empty())
|
||
|
PI.CreatedDeclarations.insert(IF);
|
||
|
CallInst *PIC = B.CreateCall(IF, Op);
|
||
|
PI.PredicateMap.insert({PIC, ValInfo});
|
||
|
Result.Def = PIC;
|
||
|
}
|
||
|
}
|
||
|
return RenameStack.back().Def;
|
||
|
}
|
||
|
|
||
|
// Instead of the standard SSA renaming algorithm, which is O(Number of
|
||
|
// instructions), and walks the entire dominator tree, we walk only the defs +
|
||
|
// uses. The standard SSA renaming algorithm does not really rely on the
|
||
|
// dominator tree except to order the stack push/pops of the renaming stacks, so
|
||
|
// that defs end up getting pushed before hitting the correct uses. This does
|
||
|
// not require the dominator tree, only the *order* of the dominator tree. The
|
||
|
// complete and correct ordering of the defs and uses, in dominator tree is
|
||
|
// contained in the DFS numbering of the dominator tree. So we sort the defs and
|
||
|
// uses into the DFS ordering, and then just use the renaming stack as per
|
||
|
// normal, pushing when we hit a def (which is a predicateinfo instruction),
|
||
|
// popping when we are out of the dfs scope for that def, and replacing any uses
|
||
|
// with top of stack if it exists. In order to handle liveness without
|
||
|
// propagating liveness info, we don't actually insert the predicateinfo
|
||
|
// instruction def until we see a use that it would dominate. Once we see such
|
||
|
// a use, we materialize the predicateinfo instruction in the right place and
|
||
|
// use it.
|
||
|
//
|
||
|
// TODO: Use this algorithm to perform fast single-variable renaming in
|
||
|
// promotememtoreg and memoryssa.
|
||
|
void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
|
||
|
ValueDFS_Compare Compare(DT);
|
||
|
// Compute liveness, and rename in O(uses) per Op.
|
||
|
for (auto *Op : OpsToRename) {
|
||
|
LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
|
||
|
unsigned Counter = 0;
|
||
|
SmallVector<ValueDFS, 16> OrderedUses;
|
||
|
const auto &ValueInfo = getValueInfo(Op);
|
||
|
// Insert the possible copies into the def/use list.
|
||
|
// They will become real copies if we find a real use for them, and never
|
||
|
// created otherwise.
|
||
|
for (auto &PossibleCopy : ValueInfo.Infos) {
|
||
|
ValueDFS VD;
|
||
|
// Determine where we are going to place the copy by the copy type.
|
||
|
// The predicate info for branches always come first, they will get
|
||
|
// materialized in the split block at the top of the block.
|
||
|
// The predicate info for assumes will be somewhere in the middle,
|
||
|
// it will get materialized in front of the assume.
|
||
|
if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
|
||
|
VD.LocalNum = LN_Middle;
|
||
|
DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
|
||
|
if (!DomNode)
|
||
|
continue;
|
||
|
VD.DFSIn = DomNode->getDFSNumIn();
|
||
|
VD.DFSOut = DomNode->getDFSNumOut();
|
||
|
VD.PInfo = PossibleCopy;
|
||
|
OrderedUses.push_back(VD);
|
||
|
} else if (isa<PredicateWithEdge>(PossibleCopy)) {
|
||
|
// If we can only do phi uses, we treat it like it's in the branch
|
||
|
// block, and handle it specially. We know that it goes last, and only
|
||
|
// dominate phi uses.
|
||
|
auto BlockEdge = getBlockEdge(PossibleCopy);
|
||
|
if (EdgeUsesOnly.count(BlockEdge)) {
|
||
|
VD.LocalNum = LN_Last;
|
||
|
auto *DomNode = DT.getNode(BlockEdge.first);
|
||
|
if (DomNode) {
|
||
|
VD.DFSIn = DomNode->getDFSNumIn();
|
||
|
VD.DFSOut = DomNode->getDFSNumOut();
|
||
|
VD.PInfo = PossibleCopy;
|
||
|
VD.EdgeOnly = true;
|
||
|
OrderedUses.push_back(VD);
|
||
|
}
|
||
|
} else {
|
||
|
// Otherwise, we are in the split block (even though we perform
|
||
|
// insertion in the branch block).
|
||
|
// Insert a possible copy at the split block and before the branch.
|
||
|
VD.LocalNum = LN_First;
|
||
|
auto *DomNode = DT.getNode(BlockEdge.second);
|
||
|
if (DomNode) {
|
||
|
VD.DFSIn = DomNode->getDFSNumIn();
|
||
|
VD.DFSOut = DomNode->getDFSNumOut();
|
||
|
VD.PInfo = PossibleCopy;
|
||
|
OrderedUses.push_back(VD);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
convertUsesToDFSOrdered(Op, OrderedUses);
|
||
|
// Here we require a stable sort because we do not bother to try to
|
||
|
// assign an order to the operands the uses represent. Thus, two
|
||
|
// uses in the same instruction do not have a strict sort order
|
||
|
// currently and will be considered equal. We could get rid of the
|
||
|
// stable sort by creating one if we wanted.
|
||
|
llvm::stable_sort(OrderedUses, Compare);
|
||
|
SmallVector<ValueDFS, 8> RenameStack;
|
||
|
// For each use, sorted into dfs order, push values and replaces uses with
|
||
|
// top of stack, which will represent the reaching def.
|
||
|
for (auto &VD : OrderedUses) {
|
||
|
// We currently do not materialize copy over copy, but we should decide if
|
||
|
// we want to.
|
||
|
bool PossibleCopy = VD.PInfo != nullptr;
|
||
|
if (RenameStack.empty()) {
|
||
|
LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
|
||
|
} else {
|
||
|
LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
|
||
|
<< RenameStack.back().DFSIn << ","
|
||
|
<< RenameStack.back().DFSOut << ")\n");
|
||
|
}
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
|
||
|
<< VD.DFSOut << ")\n");
|
||
|
|
||
|
bool ShouldPush = (VD.Def || PossibleCopy);
|
||
|
bool OutOfScope = !stackIsInScope(RenameStack, VD);
|
||
|
if (OutOfScope || ShouldPush) {
|
||
|
// Sync to our current scope.
|
||
|
popStackUntilDFSScope(RenameStack, VD);
|
||
|
if (ShouldPush) {
|
||
|
RenameStack.push_back(VD);
|
||
|
}
|
||
|
}
|
||
|
// If we get to this point, and the stack is empty we must have a use
|
||
|
// with no renaming needed, just skip it.
|
||
|
if (RenameStack.empty())
|
||
|
continue;
|
||
|
// Skip values, only want to rename the uses
|
||
|
if (VD.Def || PossibleCopy)
|
||
|
continue;
|
||
|
if (!DebugCounter::shouldExecute(RenameCounter)) {
|
||
|
LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
|
||
|
continue;
|
||
|
}
|
||
|
ValueDFS &Result = RenameStack.back();
|
||
|
|
||
|
// If the possible copy dominates something, materialize our stack up to
|
||
|
// this point. This ensures every comparison that affects our operation
|
||
|
// ends up with predicateinfo.
|
||
|
if (!Result.Def)
|
||
|
Result.Def = materializeStack(Counter, RenameStack, Op);
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
|
||
|
<< *VD.U->get() << " in " << *(VD.U->getUser())
|
||
|
<< "\n");
|
||
|
assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
|
||
|
"Predicateinfo def should have dominated this use");
|
||
|
VD.U->set(Result.Def);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
PredicateInfoBuilder::ValueInfo &
|
||
|
PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
|
||
|
auto OIN = ValueInfoNums.find(Operand);
|
||
|
if (OIN == ValueInfoNums.end()) {
|
||
|
// This will grow it
|
||
|
ValueInfos.resize(ValueInfos.size() + 1);
|
||
|
// This will use the new size and give us a 0 based number of the info
|
||
|
auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
|
||
|
assert(InsertResult.second && "Value info number already existed?");
|
||
|
return ValueInfos[InsertResult.first->second];
|
||
|
}
|
||
|
return ValueInfos[OIN->second];
|
||
|
}
|
||
|
|
||
|
const PredicateInfoBuilder::ValueInfo &
|
||
|
PredicateInfoBuilder::getValueInfo(Value *Operand) const {
|
||
|
auto OINI = ValueInfoNums.lookup(Operand);
|
||
|
assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
|
||
|
assert(OINI < ValueInfos.size() &&
|
||
|
"Value Info Number greater than size of Value Info Table");
|
||
|
return ValueInfos[OINI];
|
||
|
}
|
||
|
|
||
|
PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
|
||
|
AssumptionCache &AC)
|
||
|
: F(F) {
|
||
|
PredicateInfoBuilder Builder(*this, F, DT, AC);
|
||
|
Builder.buildPredicateInfo();
|
||
|
}
|
||
|
|
||
|
// Remove all declarations we created . The PredicateInfo consumers are
|
||
|
// responsible for remove the ssa_copy calls created.
|
||
|
PredicateInfo::~PredicateInfo() {
|
||
|
// Collect function pointers in set first, as SmallSet uses a SmallVector
|
||
|
// internally and we have to remove the asserting value handles first.
|
||
|
SmallPtrSet<Function *, 20> FunctionPtrs;
|
||
|
for (auto &F : CreatedDeclarations)
|
||
|
FunctionPtrs.insert(&*F);
|
||
|
CreatedDeclarations.clear();
|
||
|
|
||
|
for (Function *F : FunctionPtrs) {
|
||
|
assert(F->user_begin() == F->user_end() &&
|
||
|
"PredicateInfo consumer did not remove all SSA copies.");
|
||
|
F->eraseFromParent();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Optional<PredicateConstraint> PredicateBase::getConstraint() const {
|
||
|
switch (Type) {
|
||
|
case PT_Assume:
|
||
|
case PT_Branch: {
|
||
|
bool TrueEdge = true;
|
||
|
if (auto *PBranch = dyn_cast<PredicateBranch>(this))
|
||
|
TrueEdge = PBranch->TrueEdge;
|
||
|
|
||
|
if (Condition == RenamedOp) {
|
||
|
return {{CmpInst::ICMP_EQ,
|
||
|
TrueEdge ? ConstantInt::getTrue(Condition->getType())
|
||
|
: ConstantInt::getFalse(Condition->getType())}};
|
||
|
}
|
||
|
|
||
|
CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
|
||
|
if (!Cmp) {
|
||
|
// TODO: Make this an assertion once RenamedOp is fully accurate.
|
||
|
return None;
|
||
|
}
|
||
|
|
||
|
CmpInst::Predicate Pred;
|
||
|
Value *OtherOp;
|
||
|
if (Cmp->getOperand(0) == RenamedOp) {
|
||
|
Pred = Cmp->getPredicate();
|
||
|
OtherOp = Cmp->getOperand(1);
|
||
|
} else if (Cmp->getOperand(1) == RenamedOp) {
|
||
|
Pred = Cmp->getSwappedPredicate();
|
||
|
OtherOp = Cmp->getOperand(0);
|
||
|
} else {
|
||
|
// TODO: Make this an assertion once RenamedOp is fully accurate.
|
||
|
return None;
|
||
|
}
|
||
|
|
||
|
// Invert predicate along false edge.
|
||
|
if (!TrueEdge)
|
||
|
Pred = CmpInst::getInversePredicate(Pred);
|
||
|
|
||
|
return {{Pred, OtherOp}};
|
||
|
}
|
||
|
case PT_Switch:
|
||
|
if (Condition != RenamedOp) {
|
||
|
// TODO: Make this an assertion once RenamedOp is fully accurate.
|
||
|
return None;
|
||
|
}
|
||
|
|
||
|
return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
|
||
|
}
|
||
|
llvm_unreachable("Unknown predicate type");
|
||
|
}
|
||
|
|
||
|
void PredicateInfo::verifyPredicateInfo() const {}
|
||
|
|
||
|
char PredicateInfoPrinterLegacyPass::ID = 0;
|
||
|
|
||
|
PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
|
||
|
: FunctionPass(ID) {
|
||
|
initializePredicateInfoPrinterLegacyPassPass(
|
||
|
*PassRegistry::getPassRegistry());
|
||
|
}
|
||
|
|
||
|
void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
|
AU.setPreservesAll();
|
||
|
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
|
||
|
AU.addRequired<AssumptionCacheTracker>();
|
||
|
}
|
||
|
|
||
|
// Replace ssa_copy calls created by PredicateInfo with their operand.
|
||
|
static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
|
||
|
for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
|
||
|
Instruction *Inst = &*I++;
|
||
|
const auto *PI = PredInfo.getPredicateInfoFor(Inst);
|
||
|
auto *II = dyn_cast<IntrinsicInst>(Inst);
|
||
|
if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
|
||
|
continue;
|
||
|
|
||
|
Inst->replaceAllUsesWith(II->getOperand(0));
|
||
|
Inst->eraseFromParent();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
|
||
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
||
|
auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
|
||
|
PredInfo->print(dbgs());
|
||
|
if (VerifyPredicateInfo)
|
||
|
PredInfo->verifyPredicateInfo();
|
||
|
|
||
|
replaceCreatedSSACopys(*PredInfo, F);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
|
||
|
FunctionAnalysisManager &AM) {
|
||
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
||
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
||
|
OS << "PredicateInfo for function: " << F.getName() << "\n";
|
||
|
auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
|
||
|
PredInfo->print(OS);
|
||
|
|
||
|
replaceCreatedSSACopys(*PredInfo, F);
|
||
|
return PreservedAnalyses::all();
|
||
|
}
|
||
|
|
||
|
/// An assembly annotator class to print PredicateInfo information in
|
||
|
/// comments.
|
||
|
class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
|
||
|
friend class PredicateInfo;
|
||
|
const PredicateInfo *PredInfo;
|
||
|
|
||
|
public:
|
||
|
PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
|
||
|
|
||
|
void emitBasicBlockStartAnnot(const BasicBlock *BB,
|
||
|
formatted_raw_ostream &OS) override {}
|
||
|
|
||
|
void emitInstructionAnnot(const Instruction *I,
|
||
|
formatted_raw_ostream &OS) override {
|
||
|
if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
|
||
|
OS << "; Has predicate info\n";
|
||
|
if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
|
||
|
OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
|
||
|
<< " Comparison:" << *PB->Condition << " Edge: [";
|
||
|
PB->From->printAsOperand(OS);
|
||
|
OS << ",";
|
||
|
PB->To->printAsOperand(OS);
|
||
|
OS << "]";
|
||
|
} else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
|
||
|
OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
|
||
|
<< " Switch:" << *PS->Switch << " Edge: [";
|
||
|
PS->From->printAsOperand(OS);
|
||
|
OS << ",";
|
||
|
PS->To->printAsOperand(OS);
|
||
|
OS << "]";
|
||
|
} else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
|
||
|
OS << "; assume predicate info {"
|
||
|
<< " Comparison:" << *PA->Condition;
|
||
|
}
|
||
|
OS << ", RenamedOp: ";
|
||
|
PI->RenamedOp->printAsOperand(OS, false);
|
||
|
OS << " }\n";
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
void PredicateInfo::print(raw_ostream &OS) const {
|
||
|
PredicateInfoAnnotatedWriter Writer(this);
|
||
|
F.print(OS, &Writer);
|
||
|
}
|
||
|
|
||
|
void PredicateInfo::dump() const {
|
||
|
PredicateInfoAnnotatedWriter Writer(this);
|
||
|
F.print(dbgs(), &Writer);
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
|
||
|
FunctionAnalysisManager &AM) {
|
||
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
||
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
||
|
std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
|
||
|
|
||
|
return PreservedAnalyses::all();
|
||
|
}
|
||
|
}
|