608 lines
16 KiB
Plaintext
608 lines
16 KiB
Plaintext
|
//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
|
||
|
|
||
|
TODO:
|
||
|
* lmw/stmw pass a la arm load store optimizer for prolog/epilog
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
This code:
|
||
|
|
||
|
unsigned add32carry(unsigned sum, unsigned x) {
|
||
|
unsigned z = sum + x;
|
||
|
if (sum + x < x)
|
||
|
z++;
|
||
|
return z;
|
||
|
}
|
||
|
|
||
|
Should compile to something like:
|
||
|
|
||
|
addc r3,r3,r4
|
||
|
addze r3,r3
|
||
|
|
||
|
instead we get:
|
||
|
|
||
|
add r3, r4, r3
|
||
|
cmplw cr7, r3, r4
|
||
|
mfcr r4 ; 1
|
||
|
rlwinm r4, r4, 29, 31, 31
|
||
|
add r3, r3, r4
|
||
|
|
||
|
Ick.
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
We compile the hottest inner loop of viterbi to:
|
||
|
|
||
|
li r6, 0
|
||
|
b LBB1_84 ;bb432.i
|
||
|
LBB1_83: ;bb420.i
|
||
|
lbzx r8, r5, r7
|
||
|
addi r6, r7, 1
|
||
|
stbx r8, r4, r7
|
||
|
LBB1_84: ;bb432.i
|
||
|
mr r7, r6
|
||
|
cmplwi cr0, r7, 143
|
||
|
bne cr0, LBB1_83 ;bb420.i
|
||
|
|
||
|
The CBE manages to produce:
|
||
|
|
||
|
li r0, 143
|
||
|
mtctr r0
|
||
|
loop:
|
||
|
lbzx r2, r2, r11
|
||
|
stbx r0, r2, r9
|
||
|
addi r2, r2, 1
|
||
|
bdz later
|
||
|
b loop
|
||
|
|
||
|
This could be much better (bdnz instead of bdz) but it still beats us. If we
|
||
|
produced this with bdnz, the loop would be a single dispatch group.
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
Lump the constant pool for each function into ONE pic object, and reference
|
||
|
pieces of it as offsets from the start. For functions like this (contrived
|
||
|
to have lots of constants obviously):
|
||
|
|
||
|
double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
|
||
|
|
||
|
We generate:
|
||
|
|
||
|
_X:
|
||
|
lis r2, ha16(.CPI_X_0)
|
||
|
lfd f0, lo16(.CPI_X_0)(r2)
|
||
|
lis r2, ha16(.CPI_X_1)
|
||
|
lfd f2, lo16(.CPI_X_1)(r2)
|
||
|
fmadd f0, f1, f0, f2
|
||
|
lis r2, ha16(.CPI_X_2)
|
||
|
lfd f1, lo16(.CPI_X_2)(r2)
|
||
|
lis r2, ha16(.CPI_X_3)
|
||
|
lfd f2, lo16(.CPI_X_3)(r2)
|
||
|
fmadd f1, f0, f1, f2
|
||
|
blr
|
||
|
|
||
|
It would be better to materialize .CPI_X into a register, then use immediates
|
||
|
off of the register to avoid the lis's. This is even more important in PIC
|
||
|
mode.
|
||
|
|
||
|
Note that this (and the static variable version) is discussed here for GCC:
|
||
|
http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
|
||
|
|
||
|
Here's another example (the sgn function):
|
||
|
double testf(double a) {
|
||
|
return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
|
||
|
}
|
||
|
|
||
|
it produces a BB like this:
|
||
|
LBB1_1: ; cond_true
|
||
|
lis r2, ha16(LCPI1_0)
|
||
|
lfs f0, lo16(LCPI1_0)(r2)
|
||
|
lis r2, ha16(LCPI1_1)
|
||
|
lis r3, ha16(LCPI1_2)
|
||
|
lfs f2, lo16(LCPI1_2)(r3)
|
||
|
lfs f3, lo16(LCPI1_1)(r2)
|
||
|
fsub f0, f0, f1
|
||
|
fsel f1, f0, f2, f3
|
||
|
blr
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
PIC Code Gen IPO optimization:
|
||
|
|
||
|
Squish small scalar globals together into a single global struct, allowing the
|
||
|
address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
|
||
|
of the GOT on targets with one).
|
||
|
|
||
|
Note that this is discussed here for GCC:
|
||
|
http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
Fold add and sub with constant into non-extern, non-weak addresses so this:
|
||
|
|
||
|
static int a;
|
||
|
void bar(int b) { a = b; }
|
||
|
void foo(unsigned char *c) {
|
||
|
*c = a;
|
||
|
}
|
||
|
|
||
|
So that
|
||
|
|
||
|
_foo:
|
||
|
lis r2, ha16(_a)
|
||
|
la r2, lo16(_a)(r2)
|
||
|
lbz r2, 3(r2)
|
||
|
stb r2, 0(r3)
|
||
|
blr
|
||
|
|
||
|
Becomes
|
||
|
|
||
|
_foo:
|
||
|
lis r2, ha16(_a+3)
|
||
|
lbz r2, lo16(_a+3)(r2)
|
||
|
stb r2, 0(r3)
|
||
|
blr
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
We should compile these two functions to the same thing:
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
void f(int a, int b, int *P) {
|
||
|
*P = (a-b)>=0?(a-b):(b-a);
|
||
|
}
|
||
|
void g(int a, int b, int *P) {
|
||
|
*P = abs(a-b);
|
||
|
}
|
||
|
|
||
|
Further, they should compile to something better than:
|
||
|
|
||
|
_g:
|
||
|
subf r2, r4, r3
|
||
|
subfic r3, r2, 0
|
||
|
cmpwi cr0, r2, -1
|
||
|
bgt cr0, LBB2_2 ; entry
|
||
|
LBB2_1: ; entry
|
||
|
mr r2, r3
|
||
|
LBB2_2: ; entry
|
||
|
stw r2, 0(r5)
|
||
|
blr
|
||
|
|
||
|
GCC produces:
|
||
|
|
||
|
_g:
|
||
|
subf r4,r4,r3
|
||
|
srawi r2,r4,31
|
||
|
xor r0,r2,r4
|
||
|
subf r0,r2,r0
|
||
|
stw r0,0(r5)
|
||
|
blr
|
||
|
|
||
|
... which is much nicer.
|
||
|
|
||
|
This theoretically may help improve twolf slightly (used in dimbox.c:142?).
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
PR5945: This:
|
||
|
define i32 @clamp0g(i32 %a) {
|
||
|
entry:
|
||
|
%cmp = icmp slt i32 %a, 0
|
||
|
%sel = select i1 %cmp, i32 0, i32 %a
|
||
|
ret i32 %sel
|
||
|
}
|
||
|
|
||
|
Is compile to this with the PowerPC (32-bit) backend:
|
||
|
|
||
|
_clamp0g:
|
||
|
cmpwi cr0, r3, 0
|
||
|
li r2, 0
|
||
|
blt cr0, LBB1_2
|
||
|
; %bb.1: ; %entry
|
||
|
mr r2, r3
|
||
|
LBB1_2: ; %entry
|
||
|
mr r3, r2
|
||
|
blr
|
||
|
|
||
|
This could be reduced to the much simpler:
|
||
|
|
||
|
_clamp0g:
|
||
|
srawi r2, r3, 31
|
||
|
andc r3, r3, r2
|
||
|
blr
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
int foo(int N, int ***W, int **TK, int X) {
|
||
|
int t, i;
|
||
|
|
||
|
for (t = 0; t < N; ++t)
|
||
|
for (i = 0; i < 4; ++i)
|
||
|
W[t / X][i][t % X] = TK[i][t];
|
||
|
|
||
|
return 5;
|
||
|
}
|
||
|
|
||
|
We generate relatively atrocious code for this loop compared to gcc.
|
||
|
|
||
|
We could also strength reduce the rem and the div:
|
||
|
http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
We generate ugly code for this:
|
||
|
|
||
|
void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
|
||
|
unsigned code = 0;
|
||
|
if(dx < -dw) code |= 1;
|
||
|
if(dx > dw) code |= 2;
|
||
|
if(dy < -dw) code |= 4;
|
||
|
if(dy > dw) code |= 8;
|
||
|
if(dz < -dw) code |= 16;
|
||
|
if(dz > dw) code |= 32;
|
||
|
*ret = code;
|
||
|
}
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
%struct.B = type { i8, [3 x i8] }
|
||
|
|
||
|
define void @bar(%struct.B* %b) {
|
||
|
entry:
|
||
|
%tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
|
||
|
%tmp = load i32* %tmp ; <uint> [#uses=1]
|
||
|
%tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
|
||
|
%tmp4 = load i32* %tmp3 ; <uint> [#uses=1]
|
||
|
%tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2]
|
||
|
%tmp9 = load i32* %tmp8 ; <uint> [#uses=1]
|
||
|
%tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1]
|
||
|
%tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1]
|
||
|
%tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1]
|
||
|
%tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1]
|
||
|
%tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1]
|
||
|
%tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1]
|
||
|
store i32 %tmp13, i32* %tmp8
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
We emit:
|
||
|
|
||
|
_foo:
|
||
|
lwz r2, 0(r3)
|
||
|
slwi r4, r2, 1
|
||
|
or r4, r4, r2
|
||
|
rlwimi r2, r4, 0, 0, 0
|
||
|
stw r2, 0(r3)
|
||
|
blr
|
||
|
|
||
|
We could collapse a bunch of those ORs and ANDs and generate the following
|
||
|
equivalent code:
|
||
|
|
||
|
_foo:
|
||
|
lwz r2, 0(r3)
|
||
|
rlwinm r4, r2, 1, 0, 0
|
||
|
or r2, r2, r4
|
||
|
stw r2, 0(r3)
|
||
|
blr
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
Consider a function like this:
|
||
|
|
||
|
float foo(float X) { return X + 1234.4123f; }
|
||
|
|
||
|
The FP constant ends up in the constant pool, so we need to get the LR register.
|
||
|
This ends up producing code like this:
|
||
|
|
||
|
_foo:
|
||
|
.LBB_foo_0: ; entry
|
||
|
mflr r11
|
||
|
*** stw r11, 8(r1)
|
||
|
bl "L00000$pb"
|
||
|
"L00000$pb":
|
||
|
mflr r2
|
||
|
addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
|
||
|
lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
|
||
|
fadds f1, f1, f0
|
||
|
*** lwz r11, 8(r1)
|
||
|
mtlr r11
|
||
|
blr
|
||
|
|
||
|
This is functional, but there is no reason to spill the LR register all the way
|
||
|
to the stack (the two marked instrs): spilling it to a GPR is quite enough.
|
||
|
|
||
|
Implementing this will require some codegen improvements. Nate writes:
|
||
|
|
||
|
"So basically what we need to support the "no stack frame save and restore" is a
|
||
|
generalization of the LR optimization to "callee-save regs".
|
||
|
|
||
|
Currently, we have LR marked as a callee-save reg. The register allocator sees
|
||
|
that it's callee save, and spills it directly to the stack.
|
||
|
|
||
|
Ideally, something like this would happen:
|
||
|
|
||
|
LR would be in a separate register class from the GPRs. The class of LR would be
|
||
|
marked "unspillable". When the register allocator came across an unspillable
|
||
|
reg, it would ask "what is the best class to copy this into that I *can* spill"
|
||
|
If it gets a class back, which it will in this case (the gprs), it grabs a free
|
||
|
register of that class. If it is then later necessary to spill that reg, so be
|
||
|
it.
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
We compile this:
|
||
|
int test(_Bool X) {
|
||
|
return X ? 524288 : 0;
|
||
|
}
|
||
|
|
||
|
to:
|
||
|
_test:
|
||
|
cmplwi cr0, r3, 0
|
||
|
lis r2, 8
|
||
|
li r3, 0
|
||
|
beq cr0, LBB1_2 ;entry
|
||
|
LBB1_1: ;entry
|
||
|
mr r3, r2
|
||
|
LBB1_2: ;entry
|
||
|
blr
|
||
|
|
||
|
instead of:
|
||
|
_test:
|
||
|
addic r2,r3,-1
|
||
|
subfe r0,r2,r3
|
||
|
slwi r3,r0,19
|
||
|
blr
|
||
|
|
||
|
This sort of thing occurs a lot due to globalopt.
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
We compile:
|
||
|
|
||
|
define i32 @bar(i32 %x) nounwind readnone ssp {
|
||
|
entry:
|
||
|
%0 = icmp eq i32 %x, 0 ; <i1> [#uses=1]
|
||
|
%neg = sext i1 %0 to i32 ; <i32> [#uses=1]
|
||
|
ret i32 %neg
|
||
|
}
|
||
|
|
||
|
to:
|
||
|
|
||
|
_bar:
|
||
|
cntlzw r2, r3
|
||
|
slwi r2, r2, 26
|
||
|
srawi r3, r2, 31
|
||
|
blr
|
||
|
|
||
|
it would be better to produce:
|
||
|
|
||
|
_bar:
|
||
|
addic r3,r3,-1
|
||
|
subfe r3,r3,r3
|
||
|
blr
|
||
|
|
||
|
===-------------------------------------------------------------------------===
|
||
|
|
||
|
We generate horrible ppc code for this:
|
||
|
|
||
|
#define N 2000000
|
||
|
double a[N],c[N];
|
||
|
void simpleloop() {
|
||
|
int j;
|
||
|
for (j=0; j<N; j++)
|
||
|
c[j] = a[j];
|
||
|
}
|
||
|
|
||
|
LBB1_1: ;bb
|
||
|
lfdx f0, r3, r4
|
||
|
addi r5, r5, 1 ;; Extra IV for the exit value compare.
|
||
|
stfdx f0, r2, r4
|
||
|
addi r4, r4, 8
|
||
|
|
||
|
xoris r6, r5, 30 ;; This is due to a large immediate.
|
||
|
cmplwi cr0, r6, 33920
|
||
|
bne cr0, LBB1_1
|
||
|
|
||
|
//===---------------------------------------------------------------------===//
|
||
|
|
||
|
This:
|
||
|
#include <algorithm>
|
||
|
inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
|
||
|
{ return std::make_pair(a + b, a + b < a); }
|
||
|
bool no_overflow(unsigned a, unsigned b)
|
||
|
{ return !full_add(a, b).second; }
|
||
|
|
||
|
Should compile to:
|
||
|
|
||
|
__Z11no_overflowjj:
|
||
|
add r4,r3,r4
|
||
|
subfc r3,r3,r4
|
||
|
li r3,0
|
||
|
adde r3,r3,r3
|
||
|
blr
|
||
|
|
||
|
(or better) not:
|
||
|
|
||
|
__Z11no_overflowjj:
|
||
|
add r2, r4, r3
|
||
|
cmplw cr7, r2, r3
|
||
|
mfcr r2
|
||
|
rlwinm r2, r2, 29, 31, 31
|
||
|
xori r3, r2, 1
|
||
|
blr
|
||
|
|
||
|
//===---------------------------------------------------------------------===//
|
||
|
|
||
|
We compile some FP comparisons into an mfcr with two rlwinms and an or. For
|
||
|
example:
|
||
|
#include <math.h>
|
||
|
int test(double x, double y) { return islessequal(x, y);}
|
||
|
int test2(double x, double y) { return islessgreater(x, y);}
|
||
|
int test3(double x, double y) { return !islessequal(x, y);}
|
||
|
|
||
|
Compiles into (all three are similar, but the bits differ):
|
||
|
|
||
|
_test:
|
||
|
fcmpu cr7, f1, f2
|
||
|
mfcr r2
|
||
|
rlwinm r3, r2, 29, 31, 31
|
||
|
rlwinm r2, r2, 31, 31, 31
|
||
|
or r3, r2, r3
|
||
|
blr
|
||
|
|
||
|
GCC compiles this into:
|
||
|
|
||
|
_test:
|
||
|
fcmpu cr7,f1,f2
|
||
|
cror 30,28,30
|
||
|
mfcr r3
|
||
|
rlwinm r3,r3,31,1
|
||
|
blr
|
||
|
|
||
|
which is more efficient and can use mfocr. See PR642 for some more context.
|
||
|
|
||
|
//===---------------------------------------------------------------------===//
|
||
|
|
||
|
void foo(float *data, float d) {
|
||
|
long i;
|
||
|
for (i = 0; i < 8000; i++)
|
||
|
data[i] = d;
|
||
|
}
|
||
|
void foo2(float *data, float d) {
|
||
|
long i;
|
||
|
data--;
|
||
|
for (i = 0; i < 8000; i++) {
|
||
|
data[1] = d;
|
||
|
data++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
These compile to:
|
||
|
|
||
|
_foo:
|
||
|
li r2, 0
|
||
|
LBB1_1: ; bb
|
||
|
addi r4, r2, 4
|
||
|
stfsx f1, r3, r2
|
||
|
cmplwi cr0, r4, 32000
|
||
|
mr r2, r4
|
||
|
bne cr0, LBB1_1 ; bb
|
||
|
blr
|
||
|
_foo2:
|
||
|
li r2, 0
|
||
|
LBB2_1: ; bb
|
||
|
addi r4, r2, 4
|
||
|
stfsx f1, r3, r2
|
||
|
cmplwi cr0, r4, 32000
|
||
|
mr r2, r4
|
||
|
bne cr0, LBB2_1 ; bb
|
||
|
blr
|
||
|
|
||
|
The 'mr' could be eliminated to folding the add into the cmp better.
|
||
|
|
||
|
//===---------------------------------------------------------------------===//
|
||
|
Codegen for the following (low-probability) case deteriorated considerably
|
||
|
when the correctness fixes for unordered comparisons went in (PR 642, 58871).
|
||
|
It should be possible to recover the code quality described in the comments.
|
||
|
|
||
|
; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3
|
||
|
; This should produce one 'or' or 'cror' instruction per function.
|
||
|
|
||
|
; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3
|
||
|
; PR2964
|
||
|
|
||
|
define i32 @test(double %x, double %y) nounwind {
|
||
|
entry:
|
||
|
%tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1]
|
||
|
%tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
|
||
|
ret i32 %tmp345
|
||
|
}
|
||
|
|
||
|
define i32 @test2(double %x, double %y) nounwind {
|
||
|
entry:
|
||
|
%tmp3 = fcmp one double %x, %y ; <i1> [#uses=1]
|
||
|
%tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
|
||
|
ret i32 %tmp345
|
||
|
}
|
||
|
|
||
|
define i32 @test3(double %x, double %y) nounwind {
|
||
|
entry:
|
||
|
%tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1]
|
||
|
%tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
|
||
|
ret i32 %tmp34
|
||
|
}
|
||
|
|
||
|
//===---------------------------------------------------------------------===//
|
||
|
for the following code:
|
||
|
|
||
|
void foo (float *__restrict__ a, int *__restrict__ b, int n) {
|
||
|
a[n] = b[n] * 2.321;
|
||
|
}
|
||
|
|
||
|
we load b[n] to GPR, then move it VSX register and convert it float. We should
|
||
|
use vsx scalar integer load instructions to avoid direct moves
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
|
||
|
|
||
|
; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
|
||
|
; should not be generated except with -enable-finite-only-fp-math or the like).
|
||
|
; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
|
||
|
; recognize a more elaborate tree than a simple SETxx.
|
||
|
|
||
|
define double @test_FNEG_sel(double %A, double %B, double %C) {
|
||
|
%D = fsub double -0.000000e+00, %A ; <double> [#uses=1]
|
||
|
%Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1]
|
||
|
%E = select i1 %Cond, double %B, double %C ; <double> [#uses=1]
|
||
|
ret double %E
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
The save/restore sequence for CR in prolog/epilog is terrible:
|
||
|
- Each CR subreg is saved individually, rather than doing one save as a unit.
|
||
|
- On Darwin, the save is done after the decrement of SP, which means the offset
|
||
|
from SP of the save slot can be too big for a store instruction, which means we
|
||
|
need an additional register (currently hacked in 96015+96020; the solution there
|
||
|
is correct, but poor).
|
||
|
- On SVR4 the same thing can happen, and I don't think saving before the SP
|
||
|
decrement is safe on that target, as there is no red zone. This is currently
|
||
|
broken AFAIK, although it's not a target I can exercise.
|
||
|
The following demonstrates the problem:
|
||
|
extern void bar(char *p);
|
||
|
void foo() {
|
||
|
char x[100000];
|
||
|
bar(x);
|
||
|
__asm__("" ::: "cr2");
|
||
|
}
|
||
|
|
||
|
//===-------------------------------------------------------------------------===
|
||
|
Naming convention for instruction formats is very haphazard.
|
||
|
We have agreed on a naming scheme as follows:
|
||
|
|
||
|
<INST_form>{_<OP_type><OP_len>}+
|
||
|
|
||
|
Where:
|
||
|
INST_form is the instruction format (X-form, etc.)
|
||
|
OP_type is the operand type - one of OPC (opcode), RD (register destination),
|
||
|
RS (register source),
|
||
|
RDp (destination register pair),
|
||
|
RSp (source register pair), IM (immediate),
|
||
|
XO (extended opcode)
|
||
|
OP_len is the length of the operand in bits
|
||
|
|
||
|
VSX register operands would be of length 6 (split across two fields),
|
||
|
condition register fields of length 3.
|
||
|
We would not need denote reserved fields in names of instruction formats.
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
Instruction fusion was introduced in ISA 2.06 and more opportunities added in
|
||
|
ISA 2.07. LLVM needs to add infrastructure to recognize fusion opportunities
|
||
|
and force instruction pairs to be scheduled together.
|
||
|
|
||
|
-----------------------------------------------------------------------------
|
||
|
|
||
|
More general handling of any_extend and zero_extend:
|
||
|
|
||
|
See https://reviews.llvm.org/D24924#555306
|