llvm-for-llvmta/lib/Target/PowerPC/PPCMachineScheduler.cpp

248 lines
9.0 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- PPCMachineScheduler.cpp - MI Scheduler for PowerPC -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PPCMachineScheduler.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
using namespace llvm;
static cl::opt<bool>
DisableAddiLoadHeuristic("disable-ppc-sched-addi-load",
cl::desc("Disable scheduling addi instruction before"
"load for ppc"), cl::Hidden);
static cl::opt<bool>
EnableAddiHeuristic("ppc-postra-bias-addi",
cl::desc("Enable scheduling addi instruction as early"
"as possible post ra"),
cl::Hidden, cl::init(true));
static bool isADDIInstr(const GenericScheduler::SchedCandidate &Cand) {
return Cand.SU->getInstr()->getOpcode() == PPC::ADDI ||
Cand.SU->getInstr()->getOpcode() == PPC::ADDI8;
}
bool PPCPreRASchedStrategy::biasAddiLoadCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary &Zone) const {
if (DisableAddiLoadHeuristic)
return false;
SchedCandidate &FirstCand = Zone.isTop() ? TryCand : Cand;
SchedCandidate &SecondCand = Zone.isTop() ? Cand : TryCand;
if (isADDIInstr(FirstCand) && SecondCand.SU->getInstr()->mayLoad()) {
TryCand.Reason = Stall;
return true;
}
if (FirstCand.SU->getInstr()->mayLoad() && isADDIInstr(SecondCand)) {
TryCand.Reason = NoCand;
return true;
}
return false;
}
void PPCPreRASchedStrategy::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary *Zone) const {
// From GenericScheduler::tryCandidate
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return;
}
// Bias PhysReg Defs and copies to their uses and defined respectively.
if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
return;
// Avoid exceeding the target's limit.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
RegExcess, TRI, DAG->MF))
return;
// Avoid increasing the max critical pressure in the scheduled region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical, TRI, DAG->MF))
return;
// We only compare a subset of features when comparing nodes between
// Top and Bottom boundary. Some properties are simply incomparable, in many
// other instances we should only override the other boundary if something
// is a clear good pick on one boundary. Skip heuristics that are more
// "tie-breaking" in nature.
bool SameBoundary = Zone != nullptr;
if (SameBoundary) {
// For loops that are acyclic path limited, aggressively schedule for
// latency. Within an single cycle, whenever CurrMOps > 0, allow normal
// heuristics to take precedence.
if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
tryLatency(TryCand, Cand, *Zone))
return;
// Prioritize instructions that read unbuffered resources by stall cycles.
if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
return;
}
// Keep clustered nodes together to encourage downstream peephole
// optimizations which may reduce resource requirements.
//
// This is a best effort to set things up for a post-RA pass. Optimizations
// like generating loads of multiple registers should ideally be done within
// the scheduler pass by combining the loads during DAG postprocessing.
const SUnit *CandNextClusterSU =
Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
const SUnit *TryCandNextClusterSU =
TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
if (tryGreater(TryCand.SU == TryCandNextClusterSU,
Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))
return;
if (SameBoundary) {
// Weak edges are for clustering and other constraints.
if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
return;
}
// Avoid increasing the max pressure of the entire region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
Cand, RegMax, TRI, DAG->MF))
return;
if (SameBoundary) {
// Avoid critical resource consumption and balance the schedule.
TryCand.initResourceDelta(DAG, SchedModel);
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
TryCand, Cand, ResourceReduce))
return;
if (tryGreater(TryCand.ResDelta.DemandedResources,
Cand.ResDelta.DemandedResources, TryCand, Cand,
ResourceDemand))
return;
// Avoid serializing long latency dependence chains.
// For acyclic path limited loops, latency was already checked above.
if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
!Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
return;
// Fall through to original instruction order.
if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) ||
(!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
TryCand.Reason = NodeOrder;
}
}
// GenericScheduler::tryCandidate end
// Add powerpc specific heuristic only when TryCand isn't selected or
// selected as node order.
if (TryCand.Reason != NodeOrder && TryCand.Reason != NoCand)
return;
// There are some benefits to schedule the ADDI before the load to hide the
// latency, as RA may create a true dependency between the load and addi.
if (SameBoundary) {
if (biasAddiLoadCandidate(Cand, TryCand, *Zone))
return;
}
}
bool PPCPostRASchedStrategy::biasAddiCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand) const {
if (!EnableAddiHeuristic)
return false;
if (isADDIInstr(TryCand) && !isADDIInstr(Cand)) {
TryCand.Reason = Stall;
return true;
}
return false;
}
void PPCPostRASchedStrategy::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand) {
// From PostGenericScheduler::tryCandidate
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return;
}
// Prioritize instructions that read unbuffered resources by stall cycles.
if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
return;
// Keep clustered nodes together.
if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
Cand.SU == DAG->getNextClusterSucc(), TryCand, Cand, Cluster))
return;
// Avoid critical resource consumption and balance the schedule.
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
TryCand, Cand, ResourceReduce))
return;
if (tryGreater(TryCand.ResDelta.DemandedResources,
Cand.ResDelta.DemandedResources, TryCand, Cand,
ResourceDemand))
return;
// Avoid serializing long latency dependence chains.
if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
return;
}
// Fall through to original instruction order.
if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
TryCand.Reason = NodeOrder;
// PostGenericScheduler::tryCandidate end
// Add powerpc post ra specific heuristic only when TryCand isn't selected or
// selected as node order.
if (TryCand.Reason != NodeOrder && TryCand.Reason != NoCand)
return;
// There are some benefits to schedule the ADDI as early as possible post ra
// to avoid stalled by vector instructions which take up all the hw units.
// And ADDI is usually used to post inc the loop indvar, which matters the
// performance.
if (biasAddiCandidate(Cand, TryCand))
return;
}
void PPCPostRASchedStrategy::enterMBB(MachineBasicBlock *MBB) {
// Custom PPC PostRA specific behavior here.
PostGenericScheduler::enterMBB(MBB);
}
void PPCPostRASchedStrategy::leaveMBB() {
// Custom PPC PostRA specific behavior here.
PostGenericScheduler::leaveMBB();
}
void PPCPostRASchedStrategy::initialize(ScheduleDAGMI *Dag) {
// Custom PPC PostRA specific initialization here.
PostGenericScheduler::initialize(Dag);
}
SUnit *PPCPostRASchedStrategy::pickNode(bool &IsTopNode) {
// Custom PPC PostRA specific scheduling here.
return PostGenericScheduler::pickNode(IsTopNode);
}