llvm-for-llvmta/lib/Target/Lanai/Disassembler/LanaiDisassembler.cpp

243 lines
8.5 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- LanaiDisassembler.cpp - Disassembler for Lanai -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the Lanai Disassembler.
//
//===----------------------------------------------------------------------===//
#include "LanaiDisassembler.h"
#include "LanaiAluCode.h"
#include "LanaiCondCode.h"
#include "LanaiInstrInfo.h"
#include "TargetInfo/LanaiTargetInfo.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
typedef MCDisassembler::DecodeStatus DecodeStatus;
namespace llvm {
Target &getTheLanaiTarget();
}
static MCDisassembler *createLanaiDisassembler(const Target & /*T*/,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new LanaiDisassembler(STI, Ctx);
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeLanaiDisassembler() {
// Register the disassembler
TargetRegistry::RegisterMCDisassembler(getTheLanaiTarget(),
createLanaiDisassembler);
}
LanaiDisassembler::LanaiDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx)
: MCDisassembler(STI, Ctx) {}
// Forward declare because the autogenerated code will reference this.
// Definition is further down.
static DecodeStatus DecodeGPRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus decodeRiMemoryValue(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus decodeRrMemoryValue(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus decodeSplsValue(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
static DecodeStatus decodeBranch(MCInst &Inst, unsigned Insn, uint64_t Address,
const void *Decoder);
static DecodeStatus decodePredicateOperand(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus decodeShiftImm(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder);
#include "LanaiGenDisassemblerTables.inc"
static DecodeStatus readInstruction32(ArrayRef<uint8_t> Bytes, uint64_t &Size,
uint32_t &Insn) {
// We want to read exactly 4 bytes of data.
if (Bytes.size() < 4) {
Size = 0;
return MCDisassembler::Fail;
}
// Encoded as big-endian 32-bit word in the stream.
Insn =
(Bytes[0] << 24) | (Bytes[1] << 16) | (Bytes[2] << 8) | (Bytes[3] << 0);
return MCDisassembler::Success;
}
static void PostOperandDecodeAdjust(MCInst &Instr, uint32_t Insn) {
unsigned AluOp = LPAC::ADD;
// Fix up for pre and post operations.
int PqShift = -1;
if (isRMOpcode(Instr.getOpcode()))
PqShift = 16;
else if (isSPLSOpcode(Instr.getOpcode()))
PqShift = 10;
else if (isRRMOpcode(Instr.getOpcode())) {
PqShift = 16;
// Determine RRM ALU op.
AluOp = (Insn >> 8) & 0x7;
if (AluOp == 7)
// Handle JJJJJ
// 0b10000 or 0b11000
AluOp |= 0x20 | (((Insn >> 3) & 0xf) << 1);
}
if (PqShift != -1) {
unsigned PQ = (Insn >> PqShift) & 0x3;
switch (PQ) {
case 0x0:
if (Instr.getOperand(2).isReg()) {
Instr.getOperand(2).setReg(Lanai::R0);
}
if (Instr.getOperand(2).isImm())
Instr.getOperand(2).setImm(0);
break;
case 0x1:
AluOp = LPAC::makePostOp(AluOp);
break;
case 0x2:
break;
case 0x3:
AluOp = LPAC::makePreOp(AluOp);
break;
}
Instr.addOperand(MCOperand::createImm(AluOp));
}
}
DecodeStatus
LanaiDisassembler::getInstruction(MCInst &Instr, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream & /*CStream*/) const {
uint32_t Insn;
DecodeStatus Result = readInstruction32(Bytes, Size, Insn);
if (Result == MCDisassembler::Fail)
return MCDisassembler::Fail;
// Call auto-generated decoder function
Result =
decodeInstruction(DecoderTableLanai32, Instr, Insn, Address, this, STI);
if (Result != MCDisassembler::Fail) {
PostOperandDecodeAdjust(Instr, Insn);
Size = 4;
return Result;
}
return MCDisassembler::Fail;
}
static const unsigned GPRDecoderTable[] = {
Lanai::R0, Lanai::R1, Lanai::PC, Lanai::R3, Lanai::SP, Lanai::FP,
Lanai::R6, Lanai::R7, Lanai::RV, Lanai::R9, Lanai::RR1, Lanai::RR2,
Lanai::R12, Lanai::R13, Lanai::R14, Lanai::RCA, Lanai::R16, Lanai::R17,
Lanai::R18, Lanai::R19, Lanai::R20, Lanai::R21, Lanai::R22, Lanai::R23,
Lanai::R24, Lanai::R25, Lanai::R26, Lanai::R27, Lanai::R28, Lanai::R29,
Lanai::R30, Lanai::R31};
DecodeStatus DecodeGPRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void * /*Decoder*/) {
if (RegNo > 31)
return MCDisassembler::Fail;
unsigned Reg = GPRDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Reg));
return MCDisassembler::Success;
}
static DecodeStatus decodeRiMemoryValue(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder) {
// RI memory values encoded using 23 bits:
// 5 bit register, 16 bit constant
unsigned Register = (Insn >> 18) & 0x1f;
Inst.addOperand(MCOperand::createReg(GPRDecoderTable[Register]));
unsigned Offset = (Insn & 0xffff);
Inst.addOperand(MCOperand::createImm(SignExtend32<16>(Offset)));
return MCDisassembler::Success;
}
static DecodeStatus decodeRrMemoryValue(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder) {
// RR memory values encoded using 20 bits:
// 5 bit register, 5 bit register, 2 bit PQ, 3 bit ALU operator, 5 bit JJJJJ
unsigned Register = (Insn >> 15) & 0x1f;
Inst.addOperand(MCOperand::createReg(GPRDecoderTable[Register]));
Register = (Insn >> 10) & 0x1f;
Inst.addOperand(MCOperand::createReg(GPRDecoderTable[Register]));
return MCDisassembler::Success;
}
static DecodeStatus decodeSplsValue(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder) {
// RI memory values encoded using 17 bits:
// 5 bit register, 10 bit constant
unsigned Register = (Insn >> 12) & 0x1f;
Inst.addOperand(MCOperand::createReg(GPRDecoderTable[Register]));
unsigned Offset = (Insn & 0x3ff);
Inst.addOperand(MCOperand::createImm(SignExtend32<10>(Offset)));
return MCDisassembler::Success;
}
static bool tryAddingSymbolicOperand(int64_t Value, bool IsBranch,
uint64_t Address, uint64_t Offset,
uint64_t Width, MCInst &MI,
const void *Decoder) {
const MCDisassembler *Dis = static_cast<const MCDisassembler *>(Decoder);
return Dis->tryAddingSymbolicOperand(MI, Value, Address, IsBranch, Offset,
Width);
}
static DecodeStatus decodeBranch(MCInst &MI, unsigned Insn, uint64_t Address,
const void *Decoder) {
if (!tryAddingSymbolicOperand(Insn + Address, false, Address, 2, 23, MI,
Decoder))
MI.addOperand(MCOperand::createImm(Insn));
return MCDisassembler::Success;
}
static DecodeStatus decodeShiftImm(MCInst &Inst, unsigned Insn,
uint64_t Address, const void *Decoder) {
unsigned Offset = (Insn & 0xffff);
Inst.addOperand(MCOperand::createImm(SignExtend32<16>(Offset)));
return MCDisassembler::Success;
}
static DecodeStatus decodePredicateOperand(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
if (Val >= LPCC::UNKNOWN)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::createImm(Val));
return MCDisassembler::Success;
}