llvm-for-llvmta/lib/Target/BPF/BPFAdjustOpt.cpp

324 lines
9.1 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===---------------- BPFAdjustOpt.cpp - Adjust Optimization --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Adjust optimization to make the code more kernel verifier friendly.
//
//===----------------------------------------------------------------------===//
#include "BPF.h"
#include "BPFCORE.h"
#include "BPFTargetMachine.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "bpf-adjust-opt"
using namespace llvm;
static cl::opt<bool>
DisableBPFserializeICMP("bpf-disable-serialize-icmp", cl::Hidden,
cl::desc("BPF: Disable Serializing ICMP insns."),
cl::init(false));
static cl::opt<bool> DisableBPFavoidSpeculation(
"bpf-disable-avoid-speculation", cl::Hidden,
cl::desc("BPF: Disable Avoiding Speculative Code Motion."),
cl::init(false));
namespace {
class BPFAdjustOpt final : public ModulePass {
public:
static char ID;
BPFAdjustOpt() : ModulePass(ID) {}
bool runOnModule(Module &M) override;
};
class BPFAdjustOptImpl {
struct PassThroughInfo {
Instruction *Input;
Instruction *UsedInst;
uint32_t OpIdx;
PassThroughInfo(Instruction *I, Instruction *U, uint32_t Idx)
: Input(I), UsedInst(U), OpIdx(Idx) {}
};
public:
BPFAdjustOptImpl(Module *M) : M(M) {}
bool run();
private:
Module *M;
SmallVector<PassThroughInfo, 16> PassThroughs;
void adjustBasicBlock(BasicBlock &BB);
bool serializeICMPCrossBB(BasicBlock &BB);
void adjustInst(Instruction &I);
bool serializeICMPInBB(Instruction &I);
bool avoidSpeculation(Instruction &I);
bool insertPassThrough();
};
} // End anonymous namespace
char BPFAdjustOpt::ID = 0;
INITIALIZE_PASS(BPFAdjustOpt, "bpf-adjust-opt", "BPF Adjust Optimization",
false, false)
ModulePass *llvm::createBPFAdjustOpt() { return new BPFAdjustOpt(); }
bool BPFAdjustOpt::runOnModule(Module &M) { return BPFAdjustOptImpl(&M).run(); }
bool BPFAdjustOptImpl::run() {
for (Function &F : *M)
for (auto &BB : F) {
adjustBasicBlock(BB);
for (auto &I : BB)
adjustInst(I);
}
return insertPassThrough();
}
bool BPFAdjustOptImpl::insertPassThrough() {
for (auto &Info : PassThroughs) {
auto *CI = BPFCoreSharedInfo::insertPassThrough(
M, Info.UsedInst->getParent(), Info.Input, Info.UsedInst);
Info.UsedInst->setOperand(Info.OpIdx, CI);
}
return !PassThroughs.empty();
}
// To avoid combining conditionals in the same basic block by
// instrcombine optimization.
bool BPFAdjustOptImpl::serializeICMPInBB(Instruction &I) {
// For:
// comp1 = icmp <opcode> ...;
// comp2 = icmp <opcode> ...;
// ... or comp1 comp2 ...
// changed to:
// comp1 = icmp <opcode> ...;
// comp2 = icmp <opcode> ...;
// new_comp1 = __builtin_bpf_passthrough(seq_num, comp1)
// ... or new_comp1 comp2 ...
if (I.getOpcode() != Instruction::Or)
return false;
auto *Icmp1 = dyn_cast<ICmpInst>(I.getOperand(0));
if (!Icmp1)
return false;
auto *Icmp2 = dyn_cast<ICmpInst>(I.getOperand(1));
if (!Icmp2)
return false;
Value *Icmp1Op0 = Icmp1->getOperand(0);
Value *Icmp2Op0 = Icmp2->getOperand(0);
if (Icmp1Op0 != Icmp2Op0)
return false;
// Now we got two icmp instructions which feed into
// an "or" instruction.
PassThroughInfo Info(Icmp1, &I, 0);
PassThroughs.push_back(Info);
return true;
}
// To avoid combining conditionals in the same basic block by
// instrcombine optimization.
bool BPFAdjustOptImpl::serializeICMPCrossBB(BasicBlock &BB) {
// For:
// B1:
// comp1 = icmp <opcode> ...;
// if (comp1) goto B2 else B3;
// B2:
// comp2 = icmp <opcode> ...;
// if (comp2) goto B4 else B5;
// B4:
// ...
// changed to:
// B1:
// comp1 = icmp <opcode> ...;
// comp1 = __builtin_bpf_passthrough(seq_num, comp1);
// if (comp1) goto B2 else B3;
// B2:
// comp2 = icmp <opcode> ...;
// if (comp2) goto B4 else B5;
// B4:
// ...
// Check basic predecessors, if two of them (say B1, B2) are using
// icmp instructions to generate conditions and one is the predesessor
// of another (e.g., B1 is the predecessor of B2). Add a passthrough
// barrier after icmp inst of block B1.
BasicBlock *B2 = BB.getSinglePredecessor();
if (!B2)
return false;
BasicBlock *B1 = B2->getSinglePredecessor();
if (!B1)
return false;
Instruction *TI = B2->getTerminator();
auto *BI = dyn_cast<BranchInst>(TI);
if (!BI || !BI->isConditional())
return false;
auto *Cond = dyn_cast<ICmpInst>(BI->getCondition());
if (!Cond || B2->getFirstNonPHI() != Cond)
return false;
Value *B2Op0 = Cond->getOperand(0);
auto Cond2Op = Cond->getPredicate();
TI = B1->getTerminator();
BI = dyn_cast<BranchInst>(TI);
if (!BI || !BI->isConditional())
return false;
Cond = dyn_cast<ICmpInst>(BI->getCondition());
if (!Cond)
return false;
Value *B1Op0 = Cond->getOperand(0);
auto Cond1Op = Cond->getPredicate();
if (B1Op0 != B2Op0)
return false;
if (Cond1Op == ICmpInst::ICMP_SGT || Cond1Op == ICmpInst::ICMP_SGE) {
if (Cond2Op != ICmpInst::ICMP_SLT && Cond1Op != ICmpInst::ICMP_SLE)
return false;
} else if (Cond1Op == ICmpInst::ICMP_SLT || Cond1Op == ICmpInst::ICMP_SLE) {
if (Cond2Op != ICmpInst::ICMP_SGT && Cond1Op != ICmpInst::ICMP_SGE)
return false;
} else {
return false;
}
PassThroughInfo Info(Cond, BI, 0);
PassThroughs.push_back(Info);
return true;
}
// To avoid speculative hoisting certain computations out of
// a basic block.
bool BPFAdjustOptImpl::avoidSpeculation(Instruction &I) {
if (auto *LdInst = dyn_cast<LoadInst>(&I)) {
if (auto *GV = dyn_cast<GlobalVariable>(LdInst->getOperand(0))) {
if (GV->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
GV->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
return false;
}
}
if (!isa<LoadInst>(&I) && !isa<CallInst>(&I))
return false;
// For:
// B1:
// var = ...
// ...
// /* icmp may not be in the same block as var = ... */
// comp1 = icmp <opcode> var, <const>;
// if (comp1) goto B2 else B3;
// B2:
// ... var ...
// change to:
// B1:
// var = ...
// ...
// /* icmp may not be in the same block as var = ... */
// comp1 = icmp <opcode> var, <const>;
// if (comp1) goto B2 else B3;
// B2:
// var = __builtin_bpf_passthrough(seq_num, var);
// ... var ...
bool isCandidate = false;
SmallVector<PassThroughInfo, 4> Candidates;
for (User *U : I.users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
// May cover a little bit more than the
// above pattern.
if (auto *Icmp1 = dyn_cast<ICmpInst>(Inst)) {
Value *Icmp1Op1 = Icmp1->getOperand(1);
if (!isa<Constant>(Icmp1Op1))
return false;
isCandidate = true;
continue;
}
// Ignore the use in the same basic block as the definition.
if (Inst->getParent() == I.getParent())
continue;
// use in a different basic block, If there is a call or
// load/store insn before this instruction in this basic
// block. Most likely it cannot be hoisted out. Skip it.
for (auto &I2 : *Inst->getParent()) {
if (dyn_cast<CallInst>(&I2))
return false;
if (dyn_cast<LoadInst>(&I2) || dyn_cast<StoreInst>(&I2))
return false;
if (&I2 == Inst)
break;
}
// It should be used in a GEP or a simple arithmetic like
// ZEXT/SEXT which is used for GEP.
if (Inst->getOpcode() == Instruction::ZExt ||
Inst->getOpcode() == Instruction::SExt) {
PassThroughInfo Info(&I, Inst, 0);
Candidates.push_back(Info);
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
// traverse GEP inst to find Use operand index
unsigned i, e;
for (i = 1, e = GI->getNumOperands(); i != e; ++i) {
Value *V = GI->getOperand(i);
if (V == &I)
break;
}
if (i == e)
continue;
PassThroughInfo Info(&I, GI, i);
Candidates.push_back(Info);
}
}
if (!isCandidate || Candidates.empty())
return false;
llvm::append_range(PassThroughs, Candidates);
return true;
}
void BPFAdjustOptImpl::adjustBasicBlock(BasicBlock &BB) {
if (!DisableBPFserializeICMP && serializeICMPCrossBB(BB))
return;
}
void BPFAdjustOptImpl::adjustInst(Instruction &I) {
if (!DisableBPFserializeICMP && serializeICMPInBB(I))
return;
if (!DisableBPFavoidSpeculation && avoidSpeculation(I))
return;
}
PreservedAnalyses BPFAdjustOptPass::run(Module &M, ModuleAnalysisManager &AM) {
return BPFAdjustOptImpl(&M).run() ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}