llvm-for-llvmta/lib/Target/AArch64/GISel/AArch64PostSelectOptimize.cpp

188 lines
6.6 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//=== AArch64PostSelectOptimize.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does post-instruction-selection optimizations in the GlobalISel
// pipeline, before the rest of codegen runs.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "aarch64-post-select-optimize"
using namespace llvm;
namespace {
class AArch64PostSelectOptimize : public MachineFunctionPass {
public:
static char ID;
AArch64PostSelectOptimize();
StringRef getPassName() const override {
return "AArch64 Post Select Optimizer";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool optimizeNZCVDefs(MachineBasicBlock &MBB);
};
} // end anonymous namespace
void AArch64PostSelectOptimize::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PostSelectOptimize::AArch64PostSelectOptimize()
: MachineFunctionPass(ID) {
initializeAArch64PostSelectOptimizePass(*PassRegistry::getPassRegistry());
}
unsigned getNonFlagSettingVariant(unsigned Opc) {
switch (Opc) {
default:
return 0;
case AArch64::SUBSXrr:
return AArch64::SUBXrr;
case AArch64::SUBSWrr:
return AArch64::SUBWrr;
case AArch64::SUBSXrs:
return AArch64::SUBXrs;
case AArch64::SUBSXri:
return AArch64::SUBXri;
case AArch64::SUBSWri:
return AArch64::SUBWri;
}
}
bool AArch64PostSelectOptimize::optimizeNZCVDefs(MachineBasicBlock &MBB) {
// Consider the following code:
// FCMPSrr %0, %1, implicit-def $nzcv
// %sel1:gpr32 = CSELWr %_, %_, 12, implicit $nzcv
// %sub:gpr32 = SUBSWrr %_, %_, implicit-def $nzcv
// FCMPSrr %0, %1, implicit-def $nzcv
// %sel2:gpr32 = CSELWr %_, %_, 12, implicit $nzcv
// This kind of code where we have 2 FCMPs each feeding a CSEL can happen
// when we have a single IR fcmp being used by two selects. During selection,
// to ensure that there can be no clobbering of nzcv between the fcmp and the
// csel, we have to generate an fcmp immediately before each csel is
// selected.
// However, often we can essentially CSE these together later in MachineCSE.
// This doesn't work though if there are unrelated flag-setting instructions
// in between the two FCMPs. In this case, the SUBS defines NZCV
// but it doesn't have any users, being overwritten by the second FCMP.
//
// Our solution here is to try to convert flag setting operations between
// a interval of identical FCMPs, so that CSE will be able to eliminate one.
bool Changed = false;
const auto *TII = MBB.getParent()->getSubtarget().getInstrInfo();
// The first step is to find the first and last FCMPs. If we have found
// at least two, then set the limit of the bottom-up walk to the first FCMP
// found since we're only interested in dealing with instructions between
// them.
MachineInstr *FirstCmp = nullptr, *LastCmp = nullptr;
for (auto &MI : instructionsWithoutDebug(MBB.begin(), MBB.end())) {
if (MI.getOpcode() == AArch64::FCMPSrr ||
MI.getOpcode() == AArch64::FCMPDrr) {
if (!FirstCmp)
FirstCmp = &MI;
else
LastCmp = &MI;
}
}
// In addition to converting flag-setting ops in fcmp ranges into non-flag
// setting ops, across the whole basic block we also detect when nzcv
// implicit-defs are dead, and mark them as dead. Peephole optimizations need
// this information later.
LiveRegUnits LRU(*MBB.getParent()->getSubtarget().getRegisterInfo());
LRU.addLiveOuts(MBB);
bool NZCVDead = LRU.available(AArch64::NZCV);
bool InsideCmpRange = false;
for (auto &II : instructionsWithoutDebug(MBB.rbegin(), MBB.rend())) {
LRU.stepBackward(II);
if (LastCmp) { // There's a range present in this block.
// If we're inside an fcmp range, look for begin instruction.
if (InsideCmpRange && &II == FirstCmp)
InsideCmpRange = false;
else if (&II == LastCmp)
InsideCmpRange = true;
}
// Did this instruction define NZCV?
bool NZCVDeadAtCurrInstr = LRU.available(AArch64::NZCV);
if (NZCVDead && NZCVDeadAtCurrInstr && II.definesRegister(AArch64::NZCV)) {
// If we have a def and NZCV is dead, then we may convert this op.
unsigned NewOpc = getNonFlagSettingVariant(II.getOpcode());
int DeadNZCVIdx = II.findRegisterDefOperandIdx(AArch64::NZCV);
if (DeadNZCVIdx != -1) {
// If we're inside an fcmp range, then convert flag setting ops.
if (InsideCmpRange && NewOpc) {
LLVM_DEBUG(dbgs() << "Post-select optimizer: converting flag-setting "
"op in fcmp range: "
<< II);
II.setDesc(TII->get(NewOpc));
II.RemoveOperand(DeadNZCVIdx);
Changed |= true;
} else {
// Otherwise, we just set the nzcv imp-def operand to be dead, so the
// peephole optimizations can optimize them further.
II.getOperand(DeadNZCVIdx).setIsDead();
}
}
}
NZCVDead = NZCVDeadAtCurrInstr;
}
return Changed;
}
bool AArch64PostSelectOptimize::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Selected) &&
"Expected a selected MF");
bool Changed = false;
for (auto &BB : MF)
Changed |= optimizeNZCVDefs(BB);
return true;
}
char AArch64PostSelectOptimize::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PostSelectOptimize, DEBUG_TYPE,
"Optimize AArch64 selected instructions",
false, false)
INITIALIZE_PASS_END(AArch64PostSelectOptimize, DEBUG_TYPE,
"Optimize AArch64 selected instructions", false,
false)
namespace llvm {
FunctionPass *createAArch64PostSelectOptimize() {
return new AArch64PostSelectOptimize();
}
} // end namespace llvm