llvm-for-llvmta/lib/Target/AArch64/AArch64TargetTransformInfo.h

267 lines
9.4 KiB
C
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- AArch64TargetTransformInfo.h - AArch64 specific TTI ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file a TargetTransformInfo::Concept conforming object specific to the
/// AArch64 target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
#include "AArch64.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include <cstdint>
namespace llvm {
class APInt;
class Instruction;
class IntrinsicInst;
class Loop;
class SCEV;
class ScalarEvolution;
class Type;
class Value;
class VectorType;
class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
using BaseT = BasicTTIImplBase<AArch64TTIImpl>;
using TTI = TargetTransformInfo;
friend BaseT;
const AArch64Subtarget *ST;
const AArch64TargetLowering *TLI;
const AArch64Subtarget *getST() const { return ST; }
const AArch64TargetLowering *getTLI() const { return TLI; }
enum MemIntrinsicType {
VECTOR_LDST_TWO_ELEMENTS,
VECTOR_LDST_THREE_ELEMENTS,
VECTOR_LDST_FOUR_ELEMENTS
};
bool isWideningInstruction(Type *Ty, unsigned Opcode,
ArrayRef<const Value *> Args);
public:
explicit AArch64TTIImpl(const AArch64TargetMachine *TM, const Function &F)
: BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
TLI(ST->getTargetLowering()) {}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const;
/// \name Scalar TTI Implementations
/// @{
using BaseT::getIntImmCost;
int getIntImmCost(int64_t Val);
int getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind);
int getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty, TTI::TargetCostKind CostKind,
Instruction *Inst = nullptr);
int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty, TTI::TargetCostKind CostKind);
TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
/// @}
/// \name Vector TTI Implementations
/// @{
bool enableInterleavedAccessVectorization() { return true; }
unsigned getNumberOfRegisters(unsigned ClassID) const {
bool Vector = (ClassID == 1);
if (Vector) {
if (ST->hasNEON())
return 32;
return 0;
}
return 31;
}
unsigned getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind);
unsigned getRegisterBitWidth(bool Vector) const {
if (Vector) {
if (ST->hasSVE())
return std::max(ST->getMinSVEVectorSizeInBits(), 128u);
if (ST->hasNEON())
return 128;
return 0;
}
return 64;
}
unsigned getMinVectorRegisterBitWidth() {
return ST->getMinVectorRegisterBitWidth();
}
Optional<unsigned> getMaxVScale() const {
if (ST->hasSVE())
return AArch64::SVEMaxBitsPerVector / AArch64::SVEBitsPerBlock;
return BaseT::getMaxVScale();
}
unsigned getMaxInterleaveFactor(unsigned VF);
unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
unsigned Index);
unsigned getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind);
int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index);
int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsPairwise, bool IsUnsigned,
TTI::TargetCostKind CostKind);
int getArithmeticReductionCostSVE(unsigned Opcode, VectorType *ValTy,
bool IsPairwiseForm,
TTI::TargetCostKind CostKind);
int getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr);
int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr);
int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const;
bool useNeonVector(const Type *Ty) const;
int getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr);
int getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys);
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP);
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP);
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType);
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
if (!isa<ScalableVectorType>(DataType) || !ST->hasSVE())
return false;
Type *Ty = cast<ScalableVectorType>(DataType)->getElementType();
if (Ty->isPointerTy())
return true;
if (Ty->isBFloatTy() || Ty->isHalfTy() ||
Ty->isFloatTy() || Ty->isDoubleTy())
return true;
if (Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
Ty->isIntegerTy(32) || Ty->isIntegerTy(64))
return true;
return false;
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) {
return isLegalMaskedLoadStore(DataType, Alignment);
}
bool isLegalNTStore(Type *DataType, Align Alignment) {
// NOTE: The logic below is mostly geared towards LV, which calls it with
// vectors with 2 elements. We might want to improve that, if other
// users show up.
// Nontemporal vector stores can be directly lowered to STNP, if the vector
// can be halved so that each half fits into a register. That's the case if
// the element type fits into a register and the number of elements is a
// power of 2 > 1.
if (auto *DataTypeVTy = dyn_cast<VectorType>(DataType)) {
unsigned NumElements =
cast<FixedVectorType>(DataTypeVTy)->getNumElements();
unsigned EltSize = DataTypeVTy->getElementType()->getScalarSizeInBits();
return NumElements > 1 && isPowerOf2_64(NumElements) && EltSize >= 8 &&
EltSize <= 128 && isPowerOf2_64(EltSize);
}
return BaseT::isLegalNTStore(DataType, Alignment);
}
int getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
bool UseMaskForCond = false, bool UseMaskForGaps = false);
bool
shouldConsiderAddressTypePromotion(const Instruction &I,
bool &AllowPromotionWithoutCommonHeader);
bool shouldExpandReduction(const IntrinsicInst *II) const { return false; }
unsigned getGISelRematGlobalCost() const {
return 2;
}
bool supportsScalableVectors() const { return ST->hasSVE(); }
bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
TTI::ReductionFlags Flags) const;
int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
bool IsPairwiseForm,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput);
int getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, int Index,
VectorType *SubTp);
/// @}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H