457 lines
20 KiB
TableGen
457 lines
20 KiB
TableGen
|
//=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// AArch64 Atomic operand code-gen constructs.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
//===----------------------------------
|
||
|
// Atomic fences
|
||
|
//===----------------------------------
|
||
|
let AddedComplexity = 15, Size = 0 in
|
||
|
def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering),
|
||
|
[(atomic_fence timm:$ordering, 0)]>, Sched<[]>;
|
||
|
def : Pat<(atomic_fence (i64 4), (timm)), (DMB (i32 0x9))>;
|
||
|
def : Pat<(atomic_fence (timm), (timm)), (DMB (i32 0xb))>;
|
||
|
|
||
|
//===----------------------------------
|
||
|
// Atomic loads
|
||
|
//===----------------------------------
|
||
|
|
||
|
// When they're actually atomic, only one addressing mode (GPR64sp) is
|
||
|
// supported, but when they're relaxed and anything can be used, all the
|
||
|
// standard modes would be valid and may give efficiency gains.
|
||
|
|
||
|
// A atomic load operation that actually needs acquire semantics.
|
||
|
class acquiring_load<PatFrag base>
|
||
|
: PatFrag<(ops node:$ptr), (base node:$ptr)> {
|
||
|
let IsAtomic = 1;
|
||
|
let IsAtomicOrderingAcquireOrStronger = 1;
|
||
|
}
|
||
|
|
||
|
// An atomic load operation that does not need either acquire or release
|
||
|
// semantics.
|
||
|
class relaxed_load<PatFrag base>
|
||
|
: PatFrag<(ops node:$ptr), (base node:$ptr)> {
|
||
|
let IsAtomic = 1;
|
||
|
let IsAtomicOrderingAcquireOrStronger = 0;
|
||
|
}
|
||
|
|
||
|
// 8-bit loads
|
||
|
def : Pat<(acquiring_load<atomic_load_8> GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend8:$offset)),
|
||
|
(LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend8:$offset)),
|
||
|
(LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
|
||
|
uimm12s1:$offset)),
|
||
|
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_8>
|
||
|
(am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
|
||
|
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
// 16-bit loads
|
||
|
def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend16:$extend)),
|
||
|
(LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend16:$extend)),
|
||
|
(LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
|
||
|
uimm12s2:$offset)),
|
||
|
(LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_16>
|
||
|
(am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
|
||
|
(LDURHHi GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
// 32-bit loads
|
||
|
def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend32:$extend)),
|
||
|
(LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend32:$extend)),
|
||
|
(LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
|
||
|
uimm12s4:$offset)),
|
||
|
(LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_32>
|
||
|
(am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
|
||
|
(LDURWi GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
// 64-bit loads
|
||
|
def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend64:$extend)),
|
||
|
(LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend64:$extend)),
|
||
|
(LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
|
||
|
uimm12s8:$offset)),
|
||
|
(LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
|
||
|
def : Pat<(relaxed_load<atomic_load_64>
|
||
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
|
||
|
(LDURXi GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
//===----------------------------------
|
||
|
// Atomic stores
|
||
|
//===----------------------------------
|
||
|
|
||
|
// When they're actually atomic, only one addressing mode (GPR64sp) is
|
||
|
// supported, but when they're relaxed and anything can be used, all the
|
||
|
// standard modes would be valid and may give efficiency gains.
|
||
|
|
||
|
// A store operation that actually needs release semantics.
|
||
|
class releasing_store<PatFrag base>
|
||
|
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
|
||
|
let IsAtomic = 1;
|
||
|
let IsAtomicOrderingReleaseOrStronger = 1;
|
||
|
}
|
||
|
|
||
|
// An atomic store operation that doesn't actually need to be atomic on AArch64.
|
||
|
class relaxed_store<PatFrag base>
|
||
|
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
|
||
|
let IsAtomic = 1;
|
||
|
let IsAtomicOrderingReleaseOrStronger = 0;
|
||
|
}
|
||
|
|
||
|
// 8-bit stores
|
||
|
def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
|
||
|
(STLRB GPR32:$val, GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_8>
|
||
|
(ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
|
||
|
GPR32:$val),
|
||
|
(STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_8>
|
||
|
(ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
|
||
|
GPR32:$val),
|
||
|
(STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_8>
|
||
|
(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
|
||
|
(STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_8>
|
||
|
(am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
|
||
|
(STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
// 16-bit stores
|
||
|
def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
|
||
|
(STLRH GPR32:$val, GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend16:$extend),
|
||
|
GPR32:$val),
|
||
|
(STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend16:$extend),
|
||
|
GPR32:$val),
|
||
|
(STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_16>
|
||
|
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
|
||
|
(STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_16>
|
||
|
(am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
|
||
|
(STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
// 32-bit stores
|
||
|
def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
|
||
|
(STLRW GPR32:$val, GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend32:$extend),
|
||
|
GPR32:$val),
|
||
|
(STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend32:$extend),
|
||
|
GPR32:$val),
|
||
|
(STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_32>
|
||
|
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
|
||
|
(STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_32>
|
||
|
(am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
|
||
|
(STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
// 64-bit stores
|
||
|
def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
|
||
|
(STLRX GPR64:$val, GPR64sp:$ptr)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
|
||
|
ro_Wextend16:$extend),
|
||
|
GPR64:$val),
|
||
|
(STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
|
||
|
ro_Xextend16:$extend),
|
||
|
GPR64:$val),
|
||
|
(STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_64>
|
||
|
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
|
||
|
(STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
|
||
|
def : Pat<(relaxed_store<atomic_store_64>
|
||
|
(am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
|
||
|
(STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;
|
||
|
|
||
|
//===----------------------------------
|
||
|
// Low-level exclusive operations
|
||
|
//===----------------------------------
|
||
|
|
||
|
// Load-exclusives.
|
||
|
|
||
|
def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
|
||
|
}
|
||
|
|
||
|
def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
|
||
|
}
|
||
|
|
||
|
def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
|
||
|
}
|
||
|
|
||
|
def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
|
||
|
}
|
||
|
|
||
|
def : Pat<(ldxr_1 GPR64sp:$addr),
|
||
|
(SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(ldxr_2 GPR64sp:$addr),
|
||
|
(SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(ldxr_4 GPR64sp:$addr),
|
||
|
(SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;
|
||
|
|
||
|
def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
|
||
|
(SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
|
||
|
(SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
|
||
|
(SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
|
||
|
|
||
|
// Load-exclusives.
|
||
|
|
||
|
def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
|
||
|
}
|
||
|
|
||
|
def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
|
||
|
}
|
||
|
|
||
|
def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
|
||
|
}
|
||
|
|
||
|
def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
|
||
|
}
|
||
|
|
||
|
def : Pat<(ldaxr_1 GPR64sp:$addr),
|
||
|
(SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(ldaxr_2 GPR64sp:$addr),
|
||
|
(SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(ldaxr_4 GPR64sp:$addr),
|
||
|
(SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;
|
||
|
|
||
|
def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
|
||
|
(SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
|
||
|
(SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
|
||
|
def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
|
||
|
(SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
|
||
|
|
||
|
// Store-exclusives.
|
||
|
|
||
|
def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
|
||
|
}
|
||
|
|
||
|
def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
|
||
|
}
|
||
|
|
||
|
def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
|
||
|
}
|
||
|
|
||
|
def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
|
||
|
}
|
||
|
|
||
|
|
||
|
def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
|
||
|
(STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
|
||
|
(STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
|
||
|
(STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
|
||
|
(STXRX GPR64:$val, GPR64sp:$addr)>;
|
||
|
|
||
|
def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
|
||
|
(STXRB GPR32:$val, GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
|
||
|
(STXRH GPR32:$val, GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
|
||
|
(STXRW GPR32:$val, GPR64sp:$addr)>;
|
||
|
|
||
|
def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
|
||
|
(STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
|
||
|
(STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
|
||
|
(STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
|
||
|
// Store-release-exclusives.
|
||
|
|
||
|
def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stlxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
|
||
|
}
|
||
|
|
||
|
def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stlxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
|
||
|
}
|
||
|
|
||
|
def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stlxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
|
||
|
}
|
||
|
|
||
|
def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
|
||
|
(int_aarch64_stlxr node:$val, node:$ptr), [{
|
||
|
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
|
||
|
}]> {
|
||
|
let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
|
||
|
}
|
||
|
|
||
|
|
||
|
def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
|
||
|
(STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
|
||
|
(STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
|
||
|
(STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
|
||
|
(STLXRX GPR64:$val, GPR64sp:$addr)>;
|
||
|
|
||
|
def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
|
||
|
(STLXRB GPR32:$val, GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
|
||
|
(STLXRH GPR32:$val, GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
|
||
|
(STLXRW GPR32:$val, GPR64sp:$addr)>;
|
||
|
|
||
|
def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
|
||
|
(STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
|
||
|
(STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
|
||
|
(STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
|
||
|
|
||
|
|
||
|
// And clear exclusive.
|
||
|
|
||
|
def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;
|
||
|
|
||
|
//===----------------------------------
|
||
|
// Atomic cmpxchg for -O0
|
||
|
//===----------------------------------
|
||
|
|
||
|
// The fast register allocator used during -O0 inserts spills to cover any VRegs
|
||
|
// live across basic block boundaries. When this happens between an LDXR and an
|
||
|
// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
|
||
|
// fail.
|
||
|
|
||
|
// Unfortunately, this means we have to have an alternative (expanded
|
||
|
// post-regalloc) path for -O0 compilations. Fortunately this path can be
|
||
|
// significantly more naive than the standard expansion: we conservatively
|
||
|
// assume seq_cst, strong cmpxchg and omit clrex on failure.
|
||
|
|
||
|
let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch",
|
||
|
mayLoad = 1, mayStore = 1 in {
|
||
|
def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
|
||
|
(ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
|
||
|
Sched<[WriteAtomic]>;
|
||
|
|
||
|
def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
|
||
|
(ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
|
||
|
Sched<[WriteAtomic]>;
|
||
|
|
||
|
def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
|
||
|
(ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
|
||
|
Sched<[WriteAtomic]>;
|
||
|
|
||
|
def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch),
|
||
|
(ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>,
|
||
|
Sched<[WriteAtomic]>;
|
||
|
}
|
||
|
|
||
|
let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch",
|
||
|
mayLoad = 1, mayStore = 1 in
|
||
|
def CMP_SWAP_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32:$scratch),
|
||
|
(ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi,
|
||
|
GPR64:$newLo, GPR64:$newHi), []>,
|
||
|
Sched<[WriteAtomic]>;
|
||
|
|
||
|
// v8.1 Atomic instructions:
|
||
|
let Predicates = [HasLSE] in {
|
||
|
defm : LDOPregister_patterns<"LDADD", "atomic_load_add">;
|
||
|
defm : LDOPregister_patterns<"LDSET", "atomic_load_or">;
|
||
|
defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">;
|
||
|
defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">;
|
||
|
defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">;
|
||
|
defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">;
|
||
|
defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">;
|
||
|
defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">;
|
||
|
defm : LDOPregister_patterns<"SWP", "atomic_swap">;
|
||
|
defm : CASregister_patterns<"CAS", "atomic_cmp_swap">;
|
||
|
|
||
|
// These two patterns are only needed for global isel, selection dag isel
|
||
|
// converts atomic load-sub into a sub and atomic load-add, and likewise for
|
||
|
// and -> clr.
|
||
|
defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">;
|
||
|
defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">;
|
||
|
}
|