llvm-for-llvmta/include/llvm/ProfileData/SampleProf.h

993 lines
36 KiB
C
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains common definitions used in the reading and writing of
// sample profile data.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
#define LLVM_PROFILEDATA_SAMPLEPROF_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <system_error>
#include <utility>
namespace llvm {
const std::error_category &sampleprof_category();
enum class sampleprof_error {
success = 0,
bad_magic,
unsupported_version,
too_large,
truncated,
malformed,
unrecognized_format,
unsupported_writing_format,
truncated_name_table,
not_implemented,
counter_overflow,
ostream_seek_unsupported,
compress_failed,
uncompress_failed,
zlib_unavailable,
hash_mismatch
};
inline std::error_code make_error_code(sampleprof_error E) {
return std::error_code(static_cast<int>(E), sampleprof_category());
}
inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
sampleprof_error Result) {
// Prefer first error encountered as later errors may be secondary effects of
// the initial problem.
if (Accumulator == sampleprof_error::success &&
Result != sampleprof_error::success)
Accumulator = Result;
return Accumulator;
}
} // end namespace llvm
namespace std {
template <>
struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
} // end namespace std
namespace llvm {
namespace sampleprof {
enum SampleProfileFormat {
SPF_None = 0,
SPF_Text = 0x1,
SPF_Compact_Binary = 0x2,
SPF_GCC = 0x3,
SPF_Ext_Binary = 0x4,
SPF_Binary = 0xff
};
static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
uint64_t('2') << (64 - 56) | uint64_t(Format);
}
/// Get the proper representation of a string according to whether the
/// current Format uses MD5 to represent the string.
static inline StringRef getRepInFormat(StringRef Name, bool UseMD5,
std::string &GUIDBuf) {
if (Name.empty())
return Name;
GUIDBuf = std::to_string(Function::getGUID(Name));
return UseMD5 ? StringRef(GUIDBuf) : Name;
}
static inline uint64_t SPVersion() { return 103; }
// Section Type used by SampleProfileExtBinaryBaseReader and
// SampleProfileExtBinaryBaseWriter. Never change the existing
// value of enum. Only append new ones.
enum SecType {
SecInValid = 0,
SecProfSummary = 1,
SecNameTable = 2,
SecProfileSymbolList = 3,
SecFuncOffsetTable = 4,
SecFuncMetadata = 5,
// marker for the first type of profile.
SecFuncProfileFirst = 32,
SecLBRProfile = SecFuncProfileFirst
};
static inline std::string getSecName(SecType Type) {
switch (Type) {
case SecInValid:
return "InvalidSection";
case SecProfSummary:
return "ProfileSummarySection";
case SecNameTable:
return "NameTableSection";
case SecProfileSymbolList:
return "ProfileSymbolListSection";
case SecFuncOffsetTable:
return "FuncOffsetTableSection";
case SecFuncMetadata:
return "FunctionMetadata";
case SecLBRProfile:
return "LBRProfileSection";
}
llvm_unreachable("A SecType has no name for output");
}
// Entry type of section header table used by SampleProfileExtBinaryBaseReader
// and SampleProfileExtBinaryBaseWriter.
struct SecHdrTableEntry {
SecType Type;
uint64_t Flags;
uint64_t Offset;
uint64_t Size;
// The index indicating the location of the current entry in
// SectionHdrLayout table.
uint32_t LayoutIndex;
};
// Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
// common flags will be saved in the lower 32bits and section specific flags
// will be saved in the higher 32 bits.
enum class SecCommonFlags : uint32_t {
SecFlagInValid = 0,
SecFlagCompress = (1 << 0),
// Indicate the section contains only profile without context.
SecFlagFlat = (1 << 1)
};
// Section specific flags are defined here.
// !!!Note: Everytime a new enum class is created here, please add
// a new check in verifySecFlag.
enum class SecNameTableFlags : uint32_t {
SecFlagInValid = 0,
SecFlagMD5Name = (1 << 0),
// Store MD5 in fixed length instead of ULEB128 so NameTable can be
// accessed like an array.
SecFlagFixedLengthMD5 = (1 << 1)
};
enum class SecProfSummaryFlags : uint32_t {
SecFlagInValid = 0,
/// SecFlagPartial means the profile is for common/shared code.
/// The common profile is usually merged from profiles collected
/// from running other targets.
SecFlagPartial = (1 << 0)
};
enum class SecFuncMetadataFlags : uint32_t {
SecFlagInvalid = 0,
SecFlagIsProbeBased = (1 << 0),
};
// Verify section specific flag is used for the correct section.
template <class SecFlagType>
static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
// No verification is needed for common flags.
if (std::is_same<SecCommonFlags, SecFlagType>())
return;
// Verification starts here for section specific flag.
bool IsFlagLegal = false;
switch (Type) {
case SecNameTable:
IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
break;
case SecProfSummary:
IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
break;
case SecFuncMetadata:
IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
break;
default:
break;
}
if (!IsFlagLegal)
llvm_unreachable("Misuse of a flag in an incompatible section");
}
template <class SecFlagType>
static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
verifySecFlag(Entry.Type, Flag);
auto FVal = static_cast<uint64_t>(Flag);
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
Entry.Flags |= IsCommon ? FVal : (FVal << 32);
}
template <class SecFlagType>
static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
verifySecFlag(Entry.Type, Flag);
auto FVal = static_cast<uint64_t>(Flag);
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
}
template <class SecFlagType>
static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
verifySecFlag(Entry.Type, Flag);
auto FVal = static_cast<uint64_t>(Flag);
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
}
/// Represents the relative location of an instruction.
///
/// Instruction locations are specified by the line offset from the
/// beginning of the function (marked by the line where the function
/// header is) and the discriminator value within that line.
///
/// The discriminator value is useful to distinguish instructions
/// that are on the same line but belong to different basic blocks
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
struct LineLocation {
LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
void print(raw_ostream &OS) const;
void dump() const;
bool operator<(const LineLocation &O) const {
return LineOffset < O.LineOffset ||
(LineOffset == O.LineOffset && Discriminator < O.Discriminator);
}
bool operator==(const LineLocation &O) const {
return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
}
bool operator!=(const LineLocation &O) const {
return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
}
uint32_t LineOffset;
uint32_t Discriminator;
};
raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
/// Representation of a single sample record.
///
/// A sample record is represented by a positive integer value, which
/// indicates how frequently was the associated line location executed.
///
/// Additionally, if the associated location contains a function call,
/// the record will hold a list of all the possible called targets. For
/// direct calls, this will be the exact function being invoked. For
/// indirect calls (function pointers, virtual table dispatch), this
/// will be a list of one or more functions.
class SampleRecord {
public:
using CallTarget = std::pair<StringRef, uint64_t>;
struct CallTargetComparator {
bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
if (LHS.second != RHS.second)
return LHS.second > RHS.second;
return LHS.first < RHS.first;
}
};
using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
using CallTargetMap = StringMap<uint64_t>;
SampleRecord() = default;
/// Increment the number of samples for this record by \p S.
/// Optionally scale sample count \p S by \p Weight.
///
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
/// around unsigned integers.
sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
bool Overflowed;
NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
/// Add called function \p F with samples \p S.
/// Optionally scale sample count \p S by \p Weight.
///
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
/// around unsigned integers.
sampleprof_error addCalledTarget(StringRef F, uint64_t S,
uint64_t Weight = 1) {
uint64_t &TargetSamples = CallTargets[F];
bool Overflowed;
TargetSamples =
SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
/// Return true if this sample record contains function calls.
bool hasCalls() const { return !CallTargets.empty(); }
uint64_t getSamples() const { return NumSamples; }
const CallTargetMap &getCallTargets() const { return CallTargets; }
const SortedCallTargetSet getSortedCallTargets() const {
return SortCallTargets(CallTargets);
}
/// Sort call targets in descending order of call frequency.
static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
SortedCallTargetSet SortedTargets;
for (const auto &I : Targets) {
SortedTargets.emplace(I.first(), I.second);
}
return SortedTargets;
}
/// Prorate call targets by a distribution factor.
static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
float DistributionFactor) {
CallTargetMap AdjustedTargets;
for (const auto &I : Targets) {
AdjustedTargets[I.first()] = I.second * DistributionFactor;
}
return AdjustedTargets;
}
/// Merge the samples in \p Other into this record.
/// Optionally scale sample counts by \p Weight.
sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1) {
sampleprof_error Result = addSamples(Other.getSamples(), Weight);
for (const auto &I : Other.getCallTargets()) {
MergeResult(Result, addCalledTarget(I.first(), I.second, Weight));
}
return Result;
}
void print(raw_ostream &OS, unsigned Indent) const;
void dump() const;
private:
uint64_t NumSamples = 0;
CallTargetMap CallTargets;
};
raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
// State of context associated with FunctionSamples
enum ContextStateMask {
UnknownContext = 0x0, // Profile without context
RawContext = 0x1, // Full context profile from input profile
SyntheticContext = 0x2, // Synthetic context created for context promotion
InlinedContext = 0x4, // Profile for context that is inlined into caller
MergedContext = 0x8 // Profile for context merged into base profile
};
// Sample context for FunctionSamples. It consists of the calling context,
// the function name and context state. Internally sample context is represented
// using StringRef, which is also the input for constructing a `SampleContext`.
// It can accept and represent both full context string as well as context-less
// function name.
// Example of full context string (note the wrapping `[]`):
// `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
// Example of context-less function name (same as AutoFDO):
// `_Z8funcLeafi`
class SampleContext {
public:
SampleContext() : State(UnknownContext) {}
SampleContext(StringRef ContextStr,
ContextStateMask CState = UnknownContext) {
setContext(ContextStr, CState);
}
// Promote context by removing top frames (represented by `ContextStrToRemove`).
// Note that with string representation of context, the promotion is effectively
// a substr operation with `ContextStrToRemove` removed from left.
void promoteOnPath(StringRef ContextStrToRemove) {
assert(FullContext.startswith(ContextStrToRemove));
// Remove leading context and frame separator " @ ".
FullContext = FullContext.substr(ContextStrToRemove.size() + 3);
CallingContext = CallingContext.substr(ContextStrToRemove.size() + 3);
}
// Split the top context frame (left-most substr) from context.
static std::pair<StringRef, StringRef>
splitContextString(StringRef ContextStr) {
return ContextStr.split(" @ ");
}
// Decode context string for a frame to get function name and location.
// `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
static void decodeContextString(StringRef ContextStr, StringRef &FName,
LineLocation &LineLoc) {
// Get function name
auto EntrySplit = ContextStr.split(':');
FName = EntrySplit.first;
LineLoc = {0, 0};
if (!EntrySplit.second.empty()) {
// Get line offset, use signed int for getAsInteger so string will
// be parsed as signed.
int LineOffset = 0;
auto LocSplit = EntrySplit.second.split('.');
LocSplit.first.getAsInteger(10, LineOffset);
LineLoc.LineOffset = LineOffset;
// Get discriminator
if (!LocSplit.second.empty())
LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
}
}
operator StringRef() const { return FullContext; }
bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
void setState(ContextStateMask S) { State |= (uint32_t)S; }
void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
bool hasContext() const { return State != UnknownContext; }
bool isBaseContext() const { return CallingContext.empty(); }
StringRef getNameWithoutContext() const { return Name; }
StringRef getCallingContext() const { return CallingContext; }
StringRef getNameWithContext(bool WithBracket = false) const {
return WithBracket ? InputContext : FullContext;
}
private:
// Give a context string, decode and populate internal states like
// Function name, Calling context and context state. Example of input
// `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
void setContext(StringRef ContextStr, ContextStateMask CState) {
assert(!ContextStr.empty());
InputContext = ContextStr;
// Note that `[]` wrapped input indicates a full context string, otherwise
// it's treated as context-less function name only.
bool HasContext = ContextStr.startswith("[");
if (!HasContext && CState == UnknownContext) {
State = UnknownContext;
Name = FullContext = ContextStr;
} else {
// Assume raw context profile if unspecified
if (CState == UnknownContext)
State = RawContext;
else
State = CState;
// Remove encapsulating '[' and ']' if any
if (HasContext)
FullContext = ContextStr.substr(1, ContextStr.size() - 2);
else
FullContext = ContextStr;
// Caller is to the left of callee in context string
auto NameContext = FullContext.rsplit(" @ ");
if (NameContext.second.empty()) {
Name = NameContext.first;
CallingContext = NameContext.second;
} else {
Name = NameContext.second;
CallingContext = NameContext.first;
}
}
}
// Input context string including bracketed calling context and leaf function
// name
StringRef InputContext;
// Full context string including calling context and leaf function name
StringRef FullContext;
// Function name for the associated sample profile
StringRef Name;
// Calling context (leaf function excluded) for the associated sample profile
StringRef CallingContext;
// State of the associated sample profile
uint32_t State;
};
class FunctionSamples;
class SampleProfileReaderItaniumRemapper;
using BodySampleMap = std::map<LineLocation, SampleRecord>;
// NOTE: Using a StringMap here makes parsed profiles consume around 17% more
// memory, which is *very* significant for large profiles.
using FunctionSamplesMap = std::map<std::string, FunctionSamples, std::less<>>;
using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
/// Representation of the samples collected for a function.
///
/// This data structure contains all the collected samples for the body
/// of a function. Each sample corresponds to a LineLocation instance
/// within the body of the function.
class FunctionSamples {
public:
FunctionSamples() = default;
void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
void dump() const;
sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
bool Overflowed;
TotalSamples =
SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
bool Overflowed;
TotalHeadSamples =
SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
return Overflowed ? sampleprof_error::counter_overflow
: sampleprof_error::success;
}
sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
uint64_t Num, uint64_t Weight = 1) {
return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
Num, Weight);
}
sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
uint32_t Discriminator,
StringRef FName, uint64_t Num,
uint64_t Weight = 1) {
return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
FName, Num, Weight);
}
/// Return the number of samples collected at the given location.
/// Each location is specified by \p LineOffset and \p Discriminator.
/// If the location is not found in profile, return error.
ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
uint32_t Discriminator) const {
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
if (ret == BodySamples.end()) {
// For CSSPGO, in order to conserve profile size, we no longer write out
// locations profile for those not hit during training, so we need to
// treat them as zero instead of error here.
if (ProfileIsCS)
return 0;
return std::error_code();
// A missing counter for a probe likely means the probe was not executed.
// Treat it as a zero count instead of an unknown count to help edge
// weight inference.
if (FunctionSamples::ProfileIsProbeBased)
return 0;
return std::error_code();
} else {
return ret->second.getSamples();
}
}
/// Returns the call target map collected at a given location.
/// Each location is specified by \p LineOffset and \p Discriminator.
/// If the location is not found in profile, return error.
ErrorOr<SampleRecord::CallTargetMap>
findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
if (ret == BodySamples.end())
return std::error_code();
return ret->second.getCallTargets();
}
/// Returns the call target map collected at a given location specified by \p
/// CallSite. If the location is not found in profile, return error.
ErrorOr<SampleRecord::CallTargetMap>
findCallTargetMapAt(const LineLocation &CallSite) const {
const auto &Ret = BodySamples.find(CallSite);
if (Ret == BodySamples.end())
return std::error_code();
return Ret->second.getCallTargets();
}
/// Return the function samples at the given callsite location.
FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
return CallsiteSamples[Loc];
}
/// Returns the FunctionSamplesMap at the given \p Loc.
const FunctionSamplesMap *
findFunctionSamplesMapAt(const LineLocation &Loc) const {
auto iter = CallsiteSamples.find(Loc);
if (iter == CallsiteSamples.end())
return nullptr;
return &iter->second;
}
/// Returns a pointer to FunctionSamples at the given callsite location
/// \p Loc with callee \p CalleeName. If no callsite can be found, relax
/// the restriction to return the FunctionSamples at callsite location
/// \p Loc with the maximum total sample count. If \p Remapper is not
/// nullptr, use \p Remapper to find FunctionSamples with equivalent name
/// as \p CalleeName.
const FunctionSamples *
findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
SampleProfileReaderItaniumRemapper *Remapper) const;
bool empty() const { return TotalSamples == 0; }
/// Return the total number of samples collected inside the function.
uint64_t getTotalSamples() const { return TotalSamples; }
/// Return the total number of branch samples that have the function as the
/// branch target. This should be equivalent to the sample of the first
/// instruction of the symbol. But as we directly get this info for raw
/// profile without referring to potentially inaccurate debug info, this
/// gives more accurate profile data and is preferred for standalone symbols.
uint64_t getHeadSamples() const { return TotalHeadSamples; }
/// Return the sample count of the first instruction of the function.
/// The function can be either a standalone symbol or an inlined function.
uint64_t getEntrySamples() const {
if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
// For CS profile, if we already have more accurate head samples
// counted by branch sample from caller, use them as entry samples.
return getHeadSamples();
}
uint64_t Count = 0;
// Use either BodySamples or CallsiteSamples which ever has the smaller
// lineno.
if (!BodySamples.empty() &&
(CallsiteSamples.empty() ||
BodySamples.begin()->first < CallsiteSamples.begin()->first))
Count = BodySamples.begin()->second.getSamples();
else if (!CallsiteSamples.empty()) {
// An indirect callsite may be promoted to several inlined direct calls.
// We need to get the sum of them.
for (const auto &N_FS : CallsiteSamples.begin()->second)
Count += N_FS.second.getEntrySamples();
}
// Return at least 1 if total sample is not 0.
return Count ? Count : TotalSamples > 0;
}
/// Return all the samples collected in the body of the function.
const BodySampleMap &getBodySamples() const { return BodySamples; }
/// Return all the callsite samples collected in the body of the function.
const CallsiteSampleMap &getCallsiteSamples() const {
return CallsiteSamples;
}
/// Return the maximum of sample counts in a function body including functions
/// inlined in it.
uint64_t getMaxCountInside() const {
uint64_t MaxCount = 0;
for (const auto &L : getBodySamples())
MaxCount = std::max(MaxCount, L.second.getSamples());
for (const auto &C : getCallsiteSamples())
for (const FunctionSamplesMap::value_type &F : C.second)
MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
return MaxCount;
}
/// Merge the samples in \p Other into this one.
/// Optionally scale samples by \p Weight.
sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
sampleprof_error Result = sampleprof_error::success;
Name = Other.getName();
if (!GUIDToFuncNameMap)
GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
if (Context.getNameWithContext(true).empty())
Context = Other.getContext();
if (FunctionHash == 0) {
// Set the function hash code for the target profile.
FunctionHash = Other.getFunctionHash();
} else if (FunctionHash != Other.getFunctionHash()) {
// The two profiles coming with different valid hash codes indicates
// either:
// 1. They are same-named static functions from different compilation
// units (without using -unique-internal-linkage-names), or
// 2. They are really the same function but from different compilations.
// Let's bail out in either case for now, which means one profile is
// dropped.
return sampleprof_error::hash_mismatch;
}
MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
for (const auto &I : Other.getBodySamples()) {
const LineLocation &Loc = I.first;
const SampleRecord &Rec = I.second;
MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
}
for (const auto &I : Other.getCallsiteSamples()) {
const LineLocation &Loc = I.first;
FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
for (const auto &Rec : I.second)
MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
}
return Result;
}
/// Recursively traverses all children, if the total sample count of the
/// corresponding function is no less than \p Threshold, add its corresponding
/// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
/// to \p S.
void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S, const Module *M,
uint64_t Threshold) const {
if (TotalSamples <= Threshold)
return;
auto isDeclaration = [](const Function *F) {
return !F || F->isDeclaration();
};
if (isDeclaration(M->getFunction(getFuncName()))) {
// Add to the import list only when it's defined out of module.
S.insert(getGUID(Name));
}
// Import hot CallTargets, which may not be available in IR because full
// profile annotation cannot be done until backend compilation in ThinLTO.
for (const auto &BS : BodySamples)
for (const auto &TS : BS.second.getCallTargets())
if (TS.getValue() > Threshold) {
const Function *Callee = M->getFunction(getFuncName(TS.getKey()));
if (isDeclaration(Callee))
S.insert(getGUID(TS.getKey()));
}
for (const auto &CS : CallsiteSamples)
for (const auto &NameFS : CS.second)
NameFS.second.findInlinedFunctions(S, M, Threshold);
}
/// Set the name of the function.
void setName(StringRef FunctionName) { Name = FunctionName; }
/// Return the function name.
StringRef getName() const { return Name; }
/// Return function name with context.
StringRef getNameWithContext(bool WithBracket = false) const {
return FunctionSamples::ProfileIsCS
? Context.getNameWithContext(WithBracket)
: Name;
}
/// Return the original function name.
StringRef getFuncName() const { return getFuncName(Name); }
void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
uint64_t getFunctionHash() const { return FunctionHash; }
/// Return the canonical name for a function, taking into account
/// suffix elision policy attributes.
static StringRef getCanonicalFnName(const Function &F) {
auto AttrName = "sample-profile-suffix-elision-policy";
auto Attr = F.getFnAttribute(AttrName).getValueAsString();
return getCanonicalFnName(F.getName(), Attr);
}
static StringRef getCanonicalFnName(StringRef FnName, StringRef Attr = "") {
static const char *knownSuffixes[] = { ".llvm.", ".part." };
if (Attr == "" || Attr == "all") {
return FnName.split('.').first;
} else if (Attr == "selected") {
StringRef Cand(FnName);
for (const auto &Suf : knownSuffixes) {
StringRef Suffix(Suf);
auto It = Cand.rfind(Suffix);
if (It == StringRef::npos)
return Cand;
auto Dit = Cand.rfind('.');
if (Dit == It + Suffix.size() - 1)
Cand = Cand.substr(0, It);
}
return Cand;
} else if (Attr == "none") {
return FnName;
} else {
assert(false && "internal error: unknown suffix elision policy");
}
return FnName;
}
/// Translate \p Name into its original name.
/// When profile doesn't use MD5, \p Name needs no translation.
/// When profile uses MD5, \p Name in current FunctionSamples
/// is actually GUID of the original function name. getFuncName will
/// translate \p Name in current FunctionSamples into its original name
/// by looking up in the function map GUIDToFuncNameMap.
/// If the original name doesn't exist in the map, return empty StringRef.
StringRef getFuncName(StringRef Name) const {
if (!UseMD5)
return Name;
assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be popluated first");
return GUIDToFuncNameMap->lookup(std::stoull(Name.data()));
}
/// Returns the line offset to the start line of the subprogram.
/// We assume that a single function will not exceed 65535 LOC.
static unsigned getOffset(const DILocation *DIL);
/// Returns a unique call site identifier for a given debug location of a call
/// instruction. This is wrapper of two scenarios, the probe-based profile and
/// regular profile, to hide implementation details from the sample loader and
/// the context tracker.
static LineLocation getCallSiteIdentifier(const DILocation *DIL);
/// Get the FunctionSamples of the inline instance where DIL originates
/// from.
///
/// The FunctionSamples of the instruction (Machine or IR) associated to
/// \p DIL is the inlined instance in which that instruction is coming from.
/// We traverse the inline stack of that instruction, and match it with the
/// tree nodes in the profile.
///
/// \returns the FunctionSamples pointer to the inlined instance.
/// If \p Remapper is not nullptr, it will be used to find matching
/// FunctionSamples with not exactly the same but equivalent name.
const FunctionSamples *findFunctionSamples(
const DILocation *DIL,
SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
static bool ProfileIsProbeBased;
static bool ProfileIsCS;
SampleContext &getContext() const { return Context; }
void setContext(const SampleContext &FContext) { Context = FContext; }
static SampleProfileFormat Format;
/// Whether the profile uses MD5 to represent string.
static bool UseMD5;
/// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
/// all the function symbols defined or declared in current module.
DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
// Assume the input \p Name is a name coming from FunctionSamples itself.
// If UseMD5 is true, the name is already a GUID and we
// don't want to return the GUID of GUID.
static uint64_t getGUID(StringRef Name) {
return UseMD5 ? std::stoull(Name.data()) : Function::getGUID(Name);
}
// Find all the names in the current FunctionSamples including names in
// all the inline instances and names of call targets.
void findAllNames(DenseSet<StringRef> &NameSet) const;
private:
/// Mangled name of the function.
StringRef Name;
/// CFG hash value for the function.
uint64_t FunctionHash = 0;
/// Calling context for function profile
mutable SampleContext Context;
/// Total number of samples collected inside this function.
///
/// Samples are cumulative, they include all the samples collected
/// inside this function and all its inlined callees.
uint64_t TotalSamples = 0;
/// Total number of samples collected at the head of the function.
/// This is an approximation of the number of calls made to this function
/// at runtime.
uint64_t TotalHeadSamples = 0;
/// Map instruction locations to collected samples.
///
/// Each entry in this map contains the number of samples
/// collected at the corresponding line offset. All line locations
/// are an offset from the start of the function.
BodySampleMap BodySamples;
/// Map call sites to collected samples for the called function.
///
/// Each entry in this map corresponds to all the samples
/// collected for the inlined function call at the given
/// location. For example, given:
///
/// void foo() {
/// 1 bar();
/// ...
/// 8 baz();
/// }
///
/// If the bar() and baz() calls were inlined inside foo(), this
/// map will contain two entries. One for all the samples collected
/// in the call to bar() at line offset 1, the other for all the samples
/// collected in the call to baz() at line offset 8.
CallsiteSampleMap CallsiteSamples;
};
raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
/// Sort a LocationT->SampleT map by LocationT.
///
/// It produces a sorted list of <LocationT, SampleT> records by ascending
/// order of LocationT.
template <class LocationT, class SampleT> class SampleSorter {
public:
using SamplesWithLoc = std::pair<const LocationT, SampleT>;
using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
SampleSorter(const std::map<LocationT, SampleT> &Samples) {
for (const auto &I : Samples)
V.push_back(&I);
llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
return A->first < B->first;
});
}
const SamplesWithLocList &get() const { return V; }
private:
SamplesWithLocList V;
};
/// ProfileSymbolList records the list of function symbols shown up
/// in the binary used to generate the profile. It is useful to
/// to discriminate a function being so cold as not to shown up
/// in the profile and a function newly added.
class ProfileSymbolList {
public:
/// copy indicates whether we need to copy the underlying memory
/// for the input Name.
void add(StringRef Name, bool copy = false) {
if (!copy) {
Syms.insert(Name);
return;
}
Syms.insert(Name.copy(Allocator));
}
bool contains(StringRef Name) { return Syms.count(Name); }
void merge(const ProfileSymbolList &List) {
for (auto Sym : List.Syms)
add(Sym, true);
}
unsigned size() { return Syms.size(); }
void setToCompress(bool TC) { ToCompress = TC; }
bool toCompress() { return ToCompress; }
std::error_code read(const uint8_t *Data, uint64_t ListSize);
std::error_code write(raw_ostream &OS);
void dump(raw_ostream &OS = dbgs()) const;
private:
// Determine whether or not to compress the symbol list when
// writing it into profile. The variable is unused when the symbol
// list is read from an existing profile.
bool ToCompress = false;
DenseSet<StringRef> Syms;
BumpPtrAllocator Allocator;
};
} // end namespace sampleprof
} // end namespace llvm
#endif // LLVM_PROFILEDATA_SAMPLEPROF_H