237 lines
9.5 KiB
C
237 lines
9.5 KiB
C
|
//===- llvm/MatrixBuilder.h - Builder to lower matrix ops -------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file defines the MatrixBuilder class, which is used as a convenient way
|
||
|
// to lower matrix operations to LLVM IR.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_IR_MATRIXBUILDER_H
|
||
|
#define LLVM_IR_MATRIXBUILDER_H
|
||
|
|
||
|
#include "llvm/IR/Constant.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/InstrTypes.h"
|
||
|
#include "llvm/IR/Instruction.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/IR/Type.h"
|
||
|
#include "llvm/IR/Value.h"
|
||
|
#include "llvm/Support/Alignment.h"
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
class Function;
|
||
|
class Twine;
|
||
|
class Module;
|
||
|
|
||
|
template <class IRBuilderTy> class MatrixBuilder {
|
||
|
IRBuilderTy &B;
|
||
|
Module *getModule() { return B.GetInsertBlock()->getParent()->getParent(); }
|
||
|
|
||
|
std::pair<Value *, Value *> splatScalarOperandIfNeeded(Value *LHS,
|
||
|
Value *RHS) {
|
||
|
assert((LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy()) &&
|
||
|
"One of the operands must be a matrix (embedded in a vector)");
|
||
|
if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
|
||
|
assert(!isa<ScalableVectorType>(LHS->getType()) &&
|
||
|
"LHS Assumed to be fixed width");
|
||
|
RHS = B.CreateVectorSplat(
|
||
|
cast<VectorType>(LHS->getType())->getElementCount(), RHS,
|
||
|
"scalar.splat");
|
||
|
} else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
|
||
|
assert(!isa<ScalableVectorType>(RHS->getType()) &&
|
||
|
"RHS Assumed to be fixed width");
|
||
|
LHS = B.CreateVectorSplat(
|
||
|
cast<VectorType>(RHS->getType())->getElementCount(), LHS,
|
||
|
"scalar.splat");
|
||
|
}
|
||
|
return {LHS, RHS};
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
MatrixBuilder(IRBuilderTy &Builder) : B(Builder) {}
|
||
|
|
||
|
/// Create a column major, strided matrix load.
|
||
|
/// \p DataPtr - Start address of the matrix read
|
||
|
/// \p Rows - Number of rows in matrix (must be a constant)
|
||
|
/// \p Columns - Number of columns in matrix (must be a constant)
|
||
|
/// \p Stride - Space between columns
|
||
|
CallInst *CreateColumnMajorLoad(Value *DataPtr, Align Alignment,
|
||
|
Value *Stride, bool IsVolatile, unsigned Rows,
|
||
|
unsigned Columns, const Twine &Name = "") {
|
||
|
|
||
|
// Deal with the pointer
|
||
|
PointerType *PtrTy = cast<PointerType>(DataPtr->getType());
|
||
|
Type *EltTy = PtrTy->getElementType();
|
||
|
|
||
|
auto *RetType = FixedVectorType::get(EltTy, Rows * Columns);
|
||
|
|
||
|
Value *Ops[] = {DataPtr, Stride, B.getInt1(IsVolatile), B.getInt32(Rows),
|
||
|
B.getInt32(Columns)};
|
||
|
Type *OverloadedTypes[] = {RetType};
|
||
|
|
||
|
Function *TheFn = Intrinsic::getDeclaration(
|
||
|
getModule(), Intrinsic::matrix_column_major_load, OverloadedTypes);
|
||
|
|
||
|
CallInst *Call = B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
|
||
|
Attribute AlignAttr =
|
||
|
Attribute::getWithAlignment(Call->getContext(), Alignment);
|
||
|
Call->addAttribute(1, AlignAttr);
|
||
|
return Call;
|
||
|
}
|
||
|
|
||
|
/// Create a column major, strided matrix store.
|
||
|
/// \p Matrix - Matrix to store
|
||
|
/// \p Ptr - Pointer to write back to
|
||
|
/// \p Stride - Space between columns
|
||
|
CallInst *CreateColumnMajorStore(Value *Matrix, Value *Ptr, Align Alignment,
|
||
|
Value *Stride, bool IsVolatile,
|
||
|
unsigned Rows, unsigned Columns,
|
||
|
const Twine &Name = "") {
|
||
|
Value *Ops[] = {Matrix, Ptr,
|
||
|
Stride, B.getInt1(IsVolatile),
|
||
|
B.getInt32(Rows), B.getInt32(Columns)};
|
||
|
Type *OverloadedTypes[] = {Matrix->getType()};
|
||
|
|
||
|
Function *TheFn = Intrinsic::getDeclaration(
|
||
|
getModule(), Intrinsic::matrix_column_major_store, OverloadedTypes);
|
||
|
|
||
|
CallInst *Call = B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
|
||
|
Attribute AlignAttr =
|
||
|
Attribute::getWithAlignment(Call->getContext(), Alignment);
|
||
|
Call->addAttribute(2, AlignAttr);
|
||
|
return Call;
|
||
|
}
|
||
|
|
||
|
/// Create a llvm.matrix.transpose call, transposing \p Matrix with \p Rows
|
||
|
/// rows and \p Columns columns.
|
||
|
CallInst *CreateMatrixTranspose(Value *Matrix, unsigned Rows,
|
||
|
unsigned Columns, const Twine &Name = "") {
|
||
|
auto *OpType = cast<VectorType>(Matrix->getType());
|
||
|
auto *ReturnType =
|
||
|
FixedVectorType::get(OpType->getElementType(), Rows * Columns);
|
||
|
|
||
|
Type *OverloadedTypes[] = {ReturnType};
|
||
|
Value *Ops[] = {Matrix, B.getInt32(Rows), B.getInt32(Columns)};
|
||
|
Function *TheFn = Intrinsic::getDeclaration(
|
||
|
getModule(), Intrinsic::matrix_transpose, OverloadedTypes);
|
||
|
|
||
|
return B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
|
||
|
}
|
||
|
|
||
|
/// Create a llvm.matrix.multiply call, multiplying matrixes \p LHS and \p
|
||
|
/// RHS.
|
||
|
CallInst *CreateMatrixMultiply(Value *LHS, Value *RHS, unsigned LHSRows,
|
||
|
unsigned LHSColumns, unsigned RHSColumns,
|
||
|
const Twine &Name = "") {
|
||
|
auto *LHSType = cast<VectorType>(LHS->getType());
|
||
|
auto *RHSType = cast<VectorType>(RHS->getType());
|
||
|
|
||
|
auto *ReturnType =
|
||
|
FixedVectorType::get(LHSType->getElementType(), LHSRows * RHSColumns);
|
||
|
|
||
|
Value *Ops[] = {LHS, RHS, B.getInt32(LHSRows), B.getInt32(LHSColumns),
|
||
|
B.getInt32(RHSColumns)};
|
||
|
Type *OverloadedTypes[] = {ReturnType, LHSType, RHSType};
|
||
|
|
||
|
Function *TheFn = Intrinsic::getDeclaration(
|
||
|
getModule(), Intrinsic::matrix_multiply, OverloadedTypes);
|
||
|
return B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
|
||
|
}
|
||
|
|
||
|
/// Insert a single element \p NewVal into \p Matrix at indices (\p RowIdx, \p
|
||
|
/// ColumnIdx).
|
||
|
Value *CreateMatrixInsert(Value *Matrix, Value *NewVal, Value *RowIdx,
|
||
|
Value *ColumnIdx, unsigned NumRows) {
|
||
|
return B.CreateInsertElement(
|
||
|
Matrix, NewVal,
|
||
|
B.CreateAdd(B.CreateMul(ColumnIdx, ConstantInt::get(
|
||
|
ColumnIdx->getType(), NumRows)),
|
||
|
RowIdx));
|
||
|
}
|
||
|
|
||
|
/// Add matrixes \p LHS and \p RHS. Support both integer and floating point
|
||
|
/// matrixes.
|
||
|
Value *CreateAdd(Value *LHS, Value *RHS) {
|
||
|
assert(LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy());
|
||
|
if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
|
||
|
assert(!isa<ScalableVectorType>(LHS->getType()) &&
|
||
|
"LHS Assumed to be fixed width");
|
||
|
RHS = B.CreateVectorSplat(
|
||
|
cast<VectorType>(LHS->getType())->getElementCount(), RHS,
|
||
|
"scalar.splat");
|
||
|
} else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
|
||
|
assert(!isa<ScalableVectorType>(RHS->getType()) &&
|
||
|
"RHS Assumed to be fixed width");
|
||
|
LHS = B.CreateVectorSplat(
|
||
|
cast<VectorType>(RHS->getType())->getElementCount(), LHS,
|
||
|
"scalar.splat");
|
||
|
}
|
||
|
|
||
|
return cast<VectorType>(LHS->getType())
|
||
|
->getElementType()
|
||
|
->isFloatingPointTy()
|
||
|
? B.CreateFAdd(LHS, RHS)
|
||
|
: B.CreateAdd(LHS, RHS);
|
||
|
}
|
||
|
|
||
|
/// Subtract matrixes \p LHS and \p RHS. Support both integer and floating
|
||
|
/// point matrixes.
|
||
|
Value *CreateSub(Value *LHS, Value *RHS) {
|
||
|
assert(LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy());
|
||
|
if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
|
||
|
assert(!isa<ScalableVectorType>(LHS->getType()) &&
|
||
|
"LHS Assumed to be fixed width");
|
||
|
RHS = B.CreateVectorSplat(
|
||
|
cast<VectorType>(LHS->getType())->getElementCount(), RHS,
|
||
|
"scalar.splat");
|
||
|
} else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
|
||
|
assert(!isa<ScalableVectorType>(RHS->getType()) &&
|
||
|
"RHS Assumed to be fixed width");
|
||
|
LHS = B.CreateVectorSplat(
|
||
|
cast<VectorType>(RHS->getType())->getElementCount(), LHS,
|
||
|
"scalar.splat");
|
||
|
}
|
||
|
|
||
|
return cast<VectorType>(LHS->getType())
|
||
|
->getElementType()
|
||
|
->isFloatingPointTy()
|
||
|
? B.CreateFSub(LHS, RHS)
|
||
|
: B.CreateSub(LHS, RHS);
|
||
|
}
|
||
|
|
||
|
/// Multiply matrix \p LHS with scalar \p RHS or scalar \p LHS with matrix \p
|
||
|
/// RHS.
|
||
|
Value *CreateScalarMultiply(Value *LHS, Value *RHS) {
|
||
|
std::tie(LHS, RHS) = splatScalarOperandIfNeeded(LHS, RHS);
|
||
|
if (LHS->getType()->getScalarType()->isFloatingPointTy())
|
||
|
return B.CreateFMul(LHS, RHS);
|
||
|
return B.CreateMul(LHS, RHS);
|
||
|
}
|
||
|
|
||
|
/// Extracts the element at (\p RowIdx, \p ColumnIdx) from \p Matrix.
|
||
|
Value *CreateExtractElement(Value *Matrix, Value *RowIdx, Value *ColumnIdx,
|
||
|
unsigned NumRows, Twine const &Name = "") {
|
||
|
|
||
|
unsigned MaxWidth = std::max(RowIdx->getType()->getScalarSizeInBits(),
|
||
|
ColumnIdx->getType()->getScalarSizeInBits());
|
||
|
Type *IntTy = IntegerType::get(RowIdx->getType()->getContext(), MaxWidth);
|
||
|
RowIdx = B.CreateZExt(RowIdx, IntTy);
|
||
|
ColumnIdx = B.CreateZExt(ColumnIdx, IntTy);
|
||
|
Value *NumRowsV = B.getIntN(MaxWidth, NumRows);
|
||
|
return B.CreateExtractElement(
|
||
|
Matrix, B.CreateAdd(B.CreateMul(ColumnIdx, NumRowsV), RowIdx),
|
||
|
"matext");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_IR_MATRIXBUILDER_H
|