283 lines
13 KiB
C
283 lines
13 KiB
C
|
//==-- llvm/CodeGen/GlobalISel/Utils.h ---------------------------*- C++ -*-==//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
/// \file This file declares the API of helper functions used throughout the
|
||
|
/// GlobalISel pipeline.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_CODEGEN_GLOBALISEL_UTILS_H
|
||
|
#define LLVM_CODEGEN_GLOBALISEL_UTILS_H
|
||
|
|
||
|
#include "llvm/ADT/StringRef.h"
|
||
|
#include "llvm/CodeGen/Register.h"
|
||
|
#include "llvm/Support/Alignment.h"
|
||
|
#include "llvm/Support/LowLevelTypeImpl.h"
|
||
|
#include <cstdint>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
class AnalysisUsage;
|
||
|
class GISelKnownBits;
|
||
|
class MachineFunction;
|
||
|
class MachineInstr;
|
||
|
class MachineOperand;
|
||
|
class MachineOptimizationRemarkEmitter;
|
||
|
class MachineOptimizationRemarkMissed;
|
||
|
struct MachinePointerInfo;
|
||
|
class MachineRegisterInfo;
|
||
|
class MCInstrDesc;
|
||
|
class RegisterBankInfo;
|
||
|
class TargetInstrInfo;
|
||
|
class TargetLowering;
|
||
|
class TargetPassConfig;
|
||
|
class TargetRegisterInfo;
|
||
|
class TargetRegisterClass;
|
||
|
class ConstantFP;
|
||
|
class APFloat;
|
||
|
|
||
|
/// Try to constrain Reg to the specified register class. If this fails,
|
||
|
/// create a new virtual register in the correct class.
|
||
|
///
|
||
|
/// \return The virtual register constrained to the right register class.
|
||
|
Register constrainRegToClass(MachineRegisterInfo &MRI,
|
||
|
const TargetInstrInfo &TII,
|
||
|
const RegisterBankInfo &RBI, Register Reg,
|
||
|
const TargetRegisterClass &RegClass);
|
||
|
|
||
|
/// Constrain the Register operand OpIdx, so that it is now constrained to the
|
||
|
/// TargetRegisterClass passed as an argument (RegClass).
|
||
|
/// If this fails, create a new virtual register in the correct class and insert
|
||
|
/// a COPY before \p InsertPt if it is a use or after if it is a definition.
|
||
|
/// In both cases, the function also updates the register of RegMo. The debug
|
||
|
/// location of \p InsertPt is used for the new copy.
|
||
|
///
|
||
|
/// \return The virtual register constrained to the right register class.
|
||
|
Register constrainOperandRegClass(const MachineFunction &MF,
|
||
|
const TargetRegisterInfo &TRI,
|
||
|
MachineRegisterInfo &MRI,
|
||
|
const TargetInstrInfo &TII,
|
||
|
const RegisterBankInfo &RBI,
|
||
|
MachineInstr &InsertPt,
|
||
|
const TargetRegisterClass &RegClass,
|
||
|
MachineOperand &RegMO);
|
||
|
|
||
|
/// Try to constrain Reg so that it is usable by argument OpIdx of the provided
|
||
|
/// MCInstrDesc \p II. If this fails, create a new virtual register in the
|
||
|
/// correct class and insert a COPY before \p InsertPt if it is a use or after
|
||
|
/// if it is a definition. In both cases, the function also updates the register
|
||
|
/// of RegMo.
|
||
|
/// This is equivalent to constrainOperandRegClass(..., RegClass, ...)
|
||
|
/// with RegClass obtained from the MCInstrDesc. The debug location of \p
|
||
|
/// InsertPt is used for the new copy.
|
||
|
///
|
||
|
/// \return The virtual register constrained to the right register class.
|
||
|
Register constrainOperandRegClass(const MachineFunction &MF,
|
||
|
const TargetRegisterInfo &TRI,
|
||
|
MachineRegisterInfo &MRI,
|
||
|
const TargetInstrInfo &TII,
|
||
|
const RegisterBankInfo &RBI,
|
||
|
MachineInstr &InsertPt, const MCInstrDesc &II,
|
||
|
MachineOperand &RegMO, unsigned OpIdx);
|
||
|
|
||
|
/// Mutate the newly-selected instruction \p I to constrain its (possibly
|
||
|
/// generic) virtual register operands to the instruction's register class.
|
||
|
/// This could involve inserting COPYs before (for uses) or after (for defs).
|
||
|
/// This requires the number of operands to match the instruction description.
|
||
|
/// \returns whether operand regclass constraining succeeded.
|
||
|
///
|
||
|
// FIXME: Not all instructions have the same number of operands. We should
|
||
|
// probably expose a constrain helper per operand and let the target selector
|
||
|
// constrain individual registers, like fast-isel.
|
||
|
bool constrainSelectedInstRegOperands(MachineInstr &I,
|
||
|
const TargetInstrInfo &TII,
|
||
|
const TargetRegisterInfo &TRI,
|
||
|
const RegisterBankInfo &RBI);
|
||
|
|
||
|
/// Check if DstReg can be replaced with SrcReg depending on the register
|
||
|
/// constraints.
|
||
|
bool canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Check whether an instruction \p MI is dead: it only defines dead virtual
|
||
|
/// registers, and doesn't have other side effects.
|
||
|
bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Report an ISel error as a missed optimization remark to the LLVMContext's
|
||
|
/// diagnostic stream. Set the FailedISel MachineFunction property.
|
||
|
void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
|
||
|
MachineOptimizationRemarkEmitter &MORE,
|
||
|
MachineOptimizationRemarkMissed &R);
|
||
|
|
||
|
void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
|
||
|
MachineOptimizationRemarkEmitter &MORE,
|
||
|
const char *PassName, StringRef Msg,
|
||
|
const MachineInstr &MI);
|
||
|
|
||
|
/// Report an ISel warning as a missed optimization remark to the LLVMContext's
|
||
|
/// diagnostic stream.
|
||
|
void reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
|
||
|
MachineOptimizationRemarkEmitter &MORE,
|
||
|
MachineOptimizationRemarkMissed &R);
|
||
|
|
||
|
/// If \p VReg is defined by a G_CONSTANT, return the corresponding value.
|
||
|
Optional<APInt> getConstantVRegVal(Register VReg,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// If \p VReg is defined by a G_CONSTANT fits in int64_t
|
||
|
/// returns it.
|
||
|
Optional<int64_t> getConstantVRegSExtVal(Register VReg,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Simple struct used to hold a constant integer value and a virtual
|
||
|
/// register.
|
||
|
struct ValueAndVReg {
|
||
|
APInt Value;
|
||
|
Register VReg;
|
||
|
};
|
||
|
/// If \p VReg is defined by a statically evaluable chain of
|
||
|
/// instructions rooted on a G_F/CONSTANT (\p LookThroughInstrs == true)
|
||
|
/// and that constant fits in int64_t, returns its value as well as the
|
||
|
/// virtual register defined by this G_F/CONSTANT.
|
||
|
/// When \p LookThroughInstrs == false this function behaves like
|
||
|
/// getConstantVRegVal.
|
||
|
/// When \p HandleFConstants == false the function bails on G_FCONSTANTs.
|
||
|
/// When \p LookThroughAnyExt == true the function treats G_ANYEXT same as
|
||
|
/// G_SEXT.
|
||
|
Optional<ValueAndVReg>
|
||
|
getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI,
|
||
|
bool LookThroughInstrs = true,
|
||
|
bool HandleFConstants = true,
|
||
|
bool LookThroughAnyExt = false);
|
||
|
const ConstantFP* getConstantFPVRegVal(Register VReg,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// See if Reg is defined by an single def instruction that is
|
||
|
/// Opcode. Also try to do trivial folding if it's a COPY with
|
||
|
/// same types. Returns null otherwise.
|
||
|
MachineInstr *getOpcodeDef(unsigned Opcode, Register Reg,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Simple struct used to hold a Register value and the instruction which
|
||
|
/// defines it.
|
||
|
struct DefinitionAndSourceRegister {
|
||
|
MachineInstr *MI;
|
||
|
Register Reg;
|
||
|
};
|
||
|
|
||
|
/// Find the def instruction for \p Reg, and underlying value Register folding
|
||
|
/// away any copies.
|
||
|
Optional<DefinitionAndSourceRegister>
|
||
|
getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Find the def instruction for \p Reg, folding away any trivial copies. May
|
||
|
/// return nullptr if \p Reg is not a generic virtual register.
|
||
|
MachineInstr *getDefIgnoringCopies(Register Reg,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Find the source register for \p Reg, folding away any trivial copies. It
|
||
|
/// will be an output register of the instruction that getDefIgnoringCopies
|
||
|
/// returns. May return an invalid register if \p Reg is not a generic virtual
|
||
|
/// register.
|
||
|
Register getSrcRegIgnoringCopies(Register Reg,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Returns an APFloat from Val converted to the appropriate size.
|
||
|
APFloat getAPFloatFromSize(double Val, unsigned Size);
|
||
|
|
||
|
/// Modify analysis usage so it preserves passes required for the SelectionDAG
|
||
|
/// fallback.
|
||
|
void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU);
|
||
|
|
||
|
Optional<APInt> ConstantFoldBinOp(unsigned Opcode, const Register Op1,
|
||
|
const Register Op2,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
Optional<APInt> ConstantFoldExtOp(unsigned Opcode, const Register Op1,
|
||
|
uint64_t Imm, const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Test if the given value is known to have exactly one bit set. This differs
|
||
|
/// from computeKnownBits in that it doesn't necessarily determine which bit is
|
||
|
/// set.
|
||
|
bool isKnownToBeAPowerOfTwo(Register Val, const MachineRegisterInfo &MRI,
|
||
|
GISelKnownBits *KnownBits = nullptr);
|
||
|
|
||
|
/// Returns true if \p Val can be assumed to never be a NaN. If \p SNaN is true,
|
||
|
/// this returns if \p Val can be assumed to never be a signaling NaN.
|
||
|
bool isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
|
||
|
bool SNaN = false);
|
||
|
|
||
|
/// Returns true if \p Val can be assumed to never be a signaling NaN.
|
||
|
inline bool isKnownNeverSNaN(Register Val, const MachineRegisterInfo &MRI) {
|
||
|
return isKnownNeverNaN(Val, MRI, true);
|
||
|
}
|
||
|
|
||
|
Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO);
|
||
|
|
||
|
/// Return a virtual register corresponding to the incoming argument register \p
|
||
|
/// PhysReg. This register is expected to have class \p RC, and optional type \p
|
||
|
/// RegTy. This assumes all references to the register will use the same type.
|
||
|
///
|
||
|
/// If there is an existing live-in argument register, it will be returned.
|
||
|
/// This will also ensure there is a valid copy
|
||
|
Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII,
|
||
|
MCRegister PhysReg,
|
||
|
const TargetRegisterClass &RC,
|
||
|
LLT RegTy = LLT());
|
||
|
|
||
|
/// Return the least common multiple type of \p OrigTy and \p TargetTy, by changing the
|
||
|
/// number of vector elements or scalar bitwidth. The intent is a
|
||
|
/// G_MERGE_VALUES, G_BUILD_VECTOR, or G_CONCAT_VECTORS can be constructed from
|
||
|
/// \p OrigTy elements, and unmerged into \p TargetTy
|
||
|
LLVM_READNONE
|
||
|
LLT getLCMType(LLT OrigTy, LLT TargetTy);
|
||
|
|
||
|
/// Return a type where the total size is the greatest common divisor of \p
|
||
|
/// OrigTy and \p TargetTy. This will try to either change the number of vector
|
||
|
/// elements, or bitwidth of scalars. The intent is the result type can be used
|
||
|
/// as the result of a G_UNMERGE_VALUES from \p OrigTy, and then some
|
||
|
/// combination of G_MERGE_VALUES, G_BUILD_VECTOR and G_CONCAT_VECTORS (possibly
|
||
|
/// with intermediate casts) can re-form \p TargetTy.
|
||
|
///
|
||
|
/// If these are vectors with different element types, this will try to produce
|
||
|
/// a vector with a compatible total size, but the element type of \p OrigTy. If
|
||
|
/// this can't be satisfied, this will produce a scalar smaller than the
|
||
|
/// original vector elements.
|
||
|
///
|
||
|
/// In the worst case, this returns LLT::scalar(1)
|
||
|
LLVM_READNONE
|
||
|
LLT getGCDType(LLT OrigTy, LLT TargetTy);
|
||
|
|
||
|
/// \returns The splat index of a G_SHUFFLE_VECTOR \p MI when \p MI is a splat.
|
||
|
/// If \p MI is not a splat, returns None.
|
||
|
Optional<int> getSplatIndex(MachineInstr &MI);
|
||
|
|
||
|
/// Returns a scalar constant of a G_BUILD_VECTOR splat if it exists.
|
||
|
Optional<int64_t> getBuildVectorConstantSplat(const MachineInstr &MI,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Return true if the specified instruction is a G_BUILD_VECTOR or
|
||
|
/// G_BUILD_VECTOR_TRUNC where all of the elements are 0 or undef.
|
||
|
bool isBuildVectorAllZeros(const MachineInstr &MI,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Return true if the specified instruction is a G_BUILD_VECTOR or
|
||
|
/// G_BUILD_VECTOR_TRUNC where all of the elements are ~0 or undef.
|
||
|
bool isBuildVectorAllOnes(const MachineInstr &MI,
|
||
|
const MachineRegisterInfo &MRI);
|
||
|
|
||
|
/// Returns true if given the TargetLowering's boolean contents information,
|
||
|
/// the value \p Val contains a true value.
|
||
|
bool isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
|
||
|
bool IsFP);
|
||
|
|
||
|
/// Returns an integer representing true, as defined by the
|
||
|
/// TargetBooleanContents.
|
||
|
int64_t getICmpTrueVal(const TargetLowering &TLI, bool IsVector, bool IsFP);
|
||
|
} // End namespace llvm.
|
||
|
#endif
|