llvm-for-llvmta/include/llvm/Analysis/InlineModelFeatureMaps.h

71 lines
3.4 KiB
C
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- InlineModelFeatureMaps.h - common model runner defs ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
#define LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H
#include <array>
#include <string>
#include <vector>
namespace llvm {
// List of features. Each feature is defined through a triple:
// - the name of an enum member, which will be the feature index
// - a textual name, used for Tensorflow model binding (so it needs to match the
// names used by the Tensorflow model)
// - a documentation description. Currently, that is not used anywhere
// programmatically, and serves as workaround to inability of inserting comments
// in macros.
#define INLINE_FEATURE_ITERATOR(M) \
M(CalleeBasicBlockCount, "callee_basic_block_count", \
"number of basic blocks of the callee") \
M(CallSiteHeight, "callsite_height", \
"position of the call site in the original call graph - measured from " \
"the farthest SCC") \
M(NodeCount, "node_count", \
"total current number of defined functions in the module") \
M(NrCtantParams, "nr_ctant_params", \
"number of parameters in the call site that are constants") \
M(CostEstimate, "cost_estimate", "total cost estimate (threshold - free)") \
M(EdgeCount, "edge_count", \
"number of module-internal users of the caller, +1 if the caller is " \
"exposed externally") \
M(CallerUsers, "caller_users", \
"number of blocks reached from a conditional instruction, in the caller") \
M(CallerConditionallyExecutedBlocks, "caller_conditionally_executed_blocks", \
"number of blocks reached from a conditional instruction, in the caller") \
M(CallerBasicBlockCount, "caller_basic_block_count", \
"number of basic blocks in the caller") \
M(CalleeConditionallyExecutedBlocks, "callee_conditionally_executed_blocks", \
"number of blocks reached from a conditional instruction, in the callee") \
M(CalleeUsers, "callee_users", \
"number of blocks reached from a conditional instruction, in the callee")
enum class FeatureIndex : size_t {
#define POPULATE_INDICES(INDEX_NAME, NAME, COMMENT) INDEX_NAME,
INLINE_FEATURE_ITERATOR(POPULATE_INDICES)
#undef POPULATE_INDICES
NumberOfFeatures
};
constexpr size_t NumberOfFeatures =
static_cast<size_t>(FeatureIndex::NumberOfFeatures);
extern const std::array<std::string, NumberOfFeatures> FeatureNameMap;
extern const char *const DecisionName;
extern const char *const DefaultDecisionName;
extern const char *const RewardName;
using InlineFeatures = std::vector<int64_t>;
} // namespace llvm
#endif // LLVM_ANALYSIS_INLINEMODELFEATUREMAPS_H