The file names are somehow misleading as the code is not specific to
AMD K8 CPUs anymore. The files accomodate code for other AMD CPU
northbridges as well.
Same is true for the config option which is valid for AMD CPU
northbridges in general and not specific to K8.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160343.GD4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:
1) We read out the counter, add the delta and write the result to the
compare register. When a NMI or SMI hits between the read out and
the write then the counter can be ahead of the event already
2) The write to the compare register is delayed by up to two HPET
cycles in certain chipsets.
We worked around this by reading back the compare register to make
sure that the written value has hit the hardware. For certain ICH9+
chipsets this can require two readouts, as the first one can return
the previous compare register value. That's bad performance wise for
the normal case where the event is far enough in the future.
As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:
cmp = event - actual_count;
If cmp is less than 8 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and
#2 problems which would cause a wait for HPET wraparound (~306
seconds).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Nix <nix@esperi.org.uk>
Tested-by: Artur Skawina <art.08.09@gmail.com>
Cc: Damien Wyart <damien.wyart@free.fr>
Tested-by: John Drescher <drescherjm@gmail.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <alpine.LFD.2.00.1009151500060.2416@localhost6.localdomain6>
On processors with hyperthreading, when only one thread is offlined
the other thread can cause a spurious wakeup on the idled thread. We
do not want to re-WBINVD when that happens.
Ideally, we should simply skip WBINVD unless we're the last thread on
a particular core to shut down, but there might be similar issues
elsewhere in the system.
Thus, revert to previous behavior of only WBINVD outside the loop.
Partly as a result, remove the mb()'s around it: they are not
necessary since wbinvd() is a serializing instruction, but they were
intended to make sure the compiler didn't do any funny loop
optimizations.
Reported-by: Asit Mallick <asit.k.mallick@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Arjan van de Ven <arjan@linux.kernel.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.hl>
LKML-Reference: <tip-ea53069231f9317062910d6e772cca4ce93de8c8@git.kernel.org>
The code in native_play_dead() has a number of problems:
1. We should use MWAIT when available, to put ourselves into a deeper
sleep state.
2. We use the existence of CLFLUSH to determine if WBINVD is safe, but
that is totally bogus -- WBINVD is 486+, whereas CLFLUSH is a much
later addition.
3. We should do WBINVD inside the loop, just in case of something like
setting an A bit on page tables. Pointed out by Arjan van de Ven.
This code is based in part of a previous patch by Venki Pallipadi, but
unlike that patch this one keeps all the detection code local instead
of pre-caching a bunch of information. We're shutting down the CPU;
there is absolutely no hurry.
This patch moves all the code to C and deletes the global
wbinvd_halt() which is broken anyway.
Originally-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.hl>
LKML-Reference: <20090522232230.162239000@intel.com>
We have MWAIT constants spread across three different .c files, for no
good reason. Move them all into a common header file.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
LKML-Reference: <tip-*@git.kernel.org>
So far we only provide num_k8_northbridges. This is required in
different areas (e.g. L3 cache index disable, GART). But not all AMD
CPUs provide a GART. Thus it is useful to split off the GART handling
from the generic caching of AMD northbridge misc devices.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160254.GC4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
L3 cache index disable code uses PCI accesses to AMD northbridge functions.
Currently the code is #ifdef CONFIG_CPU_SUP_AMD.
But it should be #if (defined(CONFIG_CPU_SUP_AMD) && defined(CONFIG_PCI))
which in the end is a dependency to K8_NB.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160744.GF4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
During the reading of /proc/vmcore the kernel is doing
ioremap()/iounmap() repeatedly. And the buildup of un-flushed
vm_area_struct's is causing a great deal of overhead. (rb_next()
is chewing up most of that time).
This solution is to provide function set_iounmap_nonlazy(). It
causes a subsequent call to iounmap() to immediately purge the
vma area (with try_purge_vmap_area_lazy()).
With this patch we have seen the time for writing a 250MB
compressed dump drop from 71 seconds to 44 seconds.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: kexec@lists.infradead.org
Cc: <stable@kernel.org>
LKML-Reference: <E1OwHZ4-0005WK-Tw@eag09.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: hpet: Work around hardware stupidity
x86, build: Disable -fPIE when compiling with CONFIG_CC_STACKPROTECTOR=y
x86, cpufeature: Suppress compiler warning with gcc 3.x
x86, UV: Fix initialization of max_pnode
Lengths and types of breakpoints are encoded in a half byte
into CPU registers. However when we extract these values
and store them, we add a high half byte part to them: 0x40 to the
length and 0x80 to the type.
When that gets reloaded to the CPU registers, the high part
is masked.
While making the instruction breakpoints available for perf,
I zapped that high part on instruction breakpoint encoding
and that broke the arch -> generic translation used by ptrace
instruction breakpoints. Writing dr7 to set an inst breakpoint
was then failing.
There is no apparent reason for these high parts so we could get
rid of them altogether. That's an invasive change though so let's
do that later and for now fix the problem by restoring that inst
breakpoint high part encoding in this sole patch.
Reported-by: Kelvie Wong <kelvie@ieee.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Move enable_IR_x2apic() inside the default_setup_apic_routing(),
and for SMP platforms, move the default_setup_apic_routing() after
smp_sanity_check(). This cleans up the code that tries to avoid multiple
calls to default_setup_apic_routing() when smp_sanity_check() fails (which
goes through the APIC_init_uniprocessor() path).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100827181049.173087246@sbsiddha-MOBL3.sc.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently the redirection hint in the interrupt-remapping table entry
is set to 0, which means the remapped interrupt is directed to the
processors listed in the destination. So in logical flat mode
in the presence of intr-remapping, this results in a single
interrupt multi-casted to multiple cpu's as specified by the destination
bit mask. But what we really want is to send that interrupt to one of the cpus
based on the lowest priority delivery mode.
Set the redirection hint in the IRTE to '1' to indicate that we want
the remapped interrupt to be directed to only one of the processors
listed in the destination.
This fixes the issue of same interrupt getting delivered to multiple cpu's
in the logical flat mode in the presence of interrupt-remapping. While
there is no functional issue observed with this behavior, this will
impact performance of such configurations (<=8 cpu's using logical flat
mode in the presence of interrupt-remapping)
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100827181049.013051492@sbsiddha-MOBL3.sc.intel.com>
Cc: Weidong Han <weidong.han@intel.com>
Cc: <stable@kernel.org> # [v2.6.32+]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Allow using HPET with the hpet=force command line option on VIA EPIA
CX700 systems.
Signed-off-by: Udo van den Heuvel <udovdh@xs4all.nl>
Cc: Robert Hancock <hancockrwd@gmail.com>
LKML-Reference: <4C8F04DC.5060303@xs4all.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove __dummy_buf which is needed for kallsyms_lookup only.
use kallsysm_lookup_size_offset instead.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
LKML-Reference: <1284512670-2369-5-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make following (internal) functions static to make sparse
happier :-)
* get_optimized_kprobe: only called from static functions
* kretprobe_table_unlock: _lock function is static
* kprobes_optinsn_template_holder: never called but holding asm code
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
LKML-Reference: <1284512670-2369-4-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This more or less reverts commits 08be979 (x86: Force HPET
readback_cmp for all ATI chipsets) and 30a564be (x86, hpet: Restrict
read back to affected ATI chipsets) to the status of commit 8da854c
(x86, hpet: Erratum workaround for read after write of HPET
comparator).
The delta to commit 8da854c is mostly comments and the change from
WARN_ONCE to printk_once as we know the call path of this function
already.
This needs really in depth explanation:
First of all the HPET design is a complete failure. Having a counter
compare register which generates an interrupt on matching values
forces the software to do at least one superfluous readback of the
counter register.
While it is nice in theory to program "absolute" time events it is
practically useless because the timer runs at some absurd frequency
which can never be matched to real world units. So we are forced to
calculate a relative delta and this forces a readout of the actual
counter value, adding the delta and programming the compare
register. When the delta is small enough we run into the danger that
we program a compare value which is already in the past. Due to the
compare for equal nature of HPET we need to read back the counter
value after writing the compare rehgister (btw. this is necessary for
absolute timeouts as well) to make sure that we did not miss the timer
event. We try to work around that by setting the minimum delta to a
value which is larger than the theoretical time which elapses between
the counter readout and the compare register write, but that's only
true in theory. A NMI or SMI which hits between the readout and the
write can easily push us beyond that limit. This would result in
waiting for the next HPET timer interrupt until the 32bit wraparound
of the counter happens which takes about 306 seconds.
So we designed the next event function to look like:
match = read_cnt() + delta;
write_compare_ref(match);
return read_cnt() < match ? 0 : -ETIME;
At some point we got into trouble with certain ATI chipsets. Even the
above "safe" procedure failed. The reason was that the write to the
compare register was delayed probably for performance reasons. The
theory was that they wanted to avoid the synchronization of the write
with the HPET clock, which is understandable. So the write does not
hit the compare register directly instead it goes to some intermediate
register which is copied to the real compare register in sync with the
HPET clock. That opens another window for hitting the dreaded "wait
for a wraparound" problem.
To work around that "optimization" we added a read back of the compare
register which either enforced the update of the just written value or
just delayed the readout of the counter enough to avoid the issue. We
unfortunately never got any affirmative info from ATI/AMD about this.
One thing is sure, that we nuked the performance "optimization" that
way completely and I'm pretty sure that the result is worse than
before some HW folks came up with those.
Just for paranoia reasons I added a check whether the read back
compare register value was the same as the value we wrote right
before. That paranoia check triggered a couple of years after it was
added on an Intel ICH9 chipset. Venki added a workaround (commit
8da854c) which was reading the compare register twice when the first
check failed. We considered this to be a penalty in general and
restricted the readback (thus the wasted CPU cycles) to the known to
be affected ATI chipsets.
This turned out to be a utterly wrong decision. 2.6.35 testers
experienced massive problems and finally one of them bisected it down
to commit 30a564be which spured some further investigation.
Finally we got confirmation that the write to the compare register can
be delayed by up to two HPET clock cycles which explains the problems
nicely. All we can do about this is to go back to Venki's initial
workaround in a slightly modified version.
Just for the record I need to say, that all of this could have been
avoided if hardware designers and of course the HPET committee would
have thought about the consequences for a split second. It's out of my
comprehension why designing a working timer is so hard. There are two
ways to achieve it:
1) Use a counter wrap around aware compare_reg <= counter_reg
implementation instead of the easy compare_reg == counter_reg
Downsides:
- It needs more silicon.
- It needs a readout of the counter to apply a relative
timeout. This is necessary as the counter does not run in
any useful (and adjustable) frequency and there is no
guarantee that the counter which is used for timer events is
the same which is used for reading the actual time (and
therefor for calculating the delta)
Upsides:
- None
2) Use a simple down counter for relative timer events
Downsides:
- Absolute timeouts are not possible, which is not a problem
at all in the context of an OS and the expected
max. latencies/jitter (also see Downsides of #1)
Upsides:
- It needs less or equal silicon.
- It works ALWAYS
- It is way faster than a compare register based solution (One
write versus one write plus at least one and up to four
reads)
I would not be so grumpy about all of this, if I would not have been
ignored for many years when pointing out these flaws to various
hardware folks. I really hate timers (at least those which seem to be
designed by janitors).
Though finally we got a reasonable explanation plus a solution and I
want to thank all the folks involved in chasing it down and providing
valuable input to this.
Bisected-by: Nix <nix@esperi.org.uk>
Reported-by: Artur Skawina <art.08.09@gmail.com>
Reported-by: Damien Wyart <damien.wyart@free.fr>
Reported-by: John Drescher <drescherjm@gmail.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: stable@kernel.org
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix a bug introduced with commit de725de and the change in the
meaning of the return value of intel_pmu_handle_irq(). With the
current code, when you are using the BTS, you get 'dazed by NMI'
each time the BTS buffer fills up.
BTS does interrupt on the PMU vector, thus NMI. You need to take
this into account in the return value of the function.
This version fixes initial patch which was missing changes to
perf_event_intel_ds.c.
Signed-off-by: Stephane Eranian <eranian@google.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: perfmon2-devel@lists.sf.net
Cc: eranian@gmail.com
Cc: robert.richter@amd.com
LKML-Reference: <4c8a1686.aae9d80a.5aa4.5e35@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A real life genuine preemption leak..
Reported-and-tested-by: Jeff Chua <jeff.chua.linux@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mtrr_type_lookup [start:end] looked up the resultant MTRR type for that
range, based on fixed and all variable MTRR ranges. It did check for multiple
MTRR var ranges overlapping [start:end] and returned the net type.
However, if the [start:end] range spanned across any var MTRR range,
mtrr_type_lookup would return an error return of 0xFE. This was based on
typical usage of mtrr_type_lookup in PAT mapping, where region being
mapped would not normally span across MTRR ranges and also trying
to keep the code simple.
Mark recently reported the problem with this limitation. When there are
two continguous MTRR's of type "writeback" and if there is a memory mapping
over a region starting in one MTRR range and ending in another MTRR range,
such mapping will fallback to "uncached" due to the above limitation.
Change below adds support for such lookups spanning multiple MTRR ranges.
We now have a wrapper mtrr_type_lookup that dynamically splits such a region
into smaller chunks that fit within one MTRR range and does a
__mtrr_type_lookup on it and combine the results later.
Reported-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <1284159350-19841-3-git-send-email-venki@google.com>
Reviewed-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Move the MTRR type overlap check into a new function. No functional change in
this patch. Just making it easier to add multiple region overlap check in
the following patch.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
LKML-Reference: <1284159350-19841-2-git-send-email-venki@google.com>
Reviewed-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fix calculation of "max_pnode" for systems where the the highest
blade has neither cpus or memory. (And, yes, although rare this
does occur).
Signed-off-by: Jack Steiner <steiner@sgi.com>
LKML-Reference: <20100910150808.GA19802@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove ifdefs for code that the compiler can optimize away on 64-bit.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-10-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
check_fpu() in bugs.c halts boot if no FPU is found and math emulation
isn't enabled. Therefore this stub will never be used.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-9-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
While %ds still contains the userspace selector, %cs is KERNEL_CS at
this point. Always get %cs from pt_regs even for the current task.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-7-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Consolidates code and fixes the below race for 64-bit.
commit 9fa2f37bfeb798728241cc4a19578ce6e4258f25
Author: torvalds <torvalds>
Date: Tue Sep 2 07:37:25 2003 +0000
Be a lot more careful about TS_USEDFPU and preemption
We had some races where we testecd (or set) TS_USEDFPU together
with sequences that depended on the setting (like clearing or
setting the TS flag in %cr0) and we could be preempted in between,
which screws up the FPU state, since preemption will itself change
USEDFPU and the TS flag.
This makes it a lot more explicit: the "internal" low-level FPU
functions ("__xxxx_fpu()") all require preemption to be disabled,
and the exported "real" functions will make sure that is the case.
One case - in __switch_to() - was switched to the non-preempt-safe
internal version, since the scheduler itself has already disabled
preemption.
BKrev: 3f5448b5WRiQuyzAlbajs3qoQjSobw
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-6-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Make fpu_init() handle 32-bit setup.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-3-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Neither the overcommit nor the reservation sysfs parameter were
actually working, remove them as they'll only get in the way.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the current perf_disable() usage is only an optimization,
remove it for now. This eases the removal of the __weak
hw_perf_enable() interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simple registration interface for struct pmu, this provides the
infrastructure for removing all the weak functions.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The copy of /proc/vmcore to a user buffer proceeds much faster
if the kernel addresses memory as cached.
With this patch we have seen an increase in transfer rate from
less than 15MB/s to 80-460MB/s, depending on size of the
transfer. This makes a big difference in time needed to save a
system dump.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Cc: <stable@kernel.org> # as far back as it would apply
LKML-Reference: <E1OtMLz-0001yp-Ia@eag09.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The recently updated CPUID specification names new SVM feature bits.
Add them to the list of reported features.
Signed-off-by: Andre Przywara <andre.przywara@amd,com>
LKML-Reference: <1283778860-26843-5-git-send-email-andre.przywara@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mcheck: Avoid duplicate sysfs links/files for thresholding banks
io-mapping: Fix the address space annotations
x86: Fix the address space annotations of iomap_atomic_prot_pfn()
x86, mm: Fix CONFIG_VMSPLIT_1G and 2G_OPT trampoline
x86, hwmon: Fix unsafe smp_processor_id() in thermal_throttle_add_dev
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf, x86: Try to handle unknown nmis with an enabled PMU
perf, x86: Fix handle_irq return values
perf, x86: Fix accidentally ack'ing a second event on intel perf counter
oprofile, x86: fix init_sysfs() function stub
lockup_detector: Sync touch_*_watchdog back to old semantics
tracing: Fix a race in function profile
oprofile, x86: fix init_sysfs error handling
perf_events: Fix time tracking for events with pid != -1 and cpu != -1
perf: Initialize callchains roots's childen hits
oprofile: fix crash when accessing freed task structs
The ACPI/X86_IO_ACPI ifdef isn't necessary at this point,
because it is checked in an outer ifdef level already and has no
effect here.
Cleanup only, no functional effect.
Signed-off-by: Christian Dietrich <qy03fugy@stud.informatik.uni-erlangen.de>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: vamos-dev@i4.informatik.uni-erlangen.de
LKML-Reference: <d4376e6d79b8dc0f89a4b3ce4a880904a7b93ead.1283782701.git.qy03fugy@stud.informatik.uni-erlangen.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The irq stacks, located in the percpu-area, need to be
THREAD_SIZE aligned. Add the infrastucture to align percpu
variables to larger-than-pagesize amounts within the percpu
area, and use it to specify the alignment for the irq stacks.
Also align the percpu area itself to THREAD_SIZE.
This should make irq stacks work with 8K THREAD_SIZE.
Signed-off-by: Alexander van Heukelum <heukelum@fastmail.fm>
Cc: Tejun Heo <tj@kernel.org>
Cc: hch@lst.de
LKML-Reference: <1283799222.15941.1393621887@webmail.messagingengine.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In unexpected_thermal_interrupt(), "LVT TMR interrupt" is used
in error message.
I don't think TMR is a suitable abbreviation for thermal.
1.TMR has been used in IA32 Architectures Software Developer's
Manual, and is the abbreviation for Trigger Mode Register.
2.There is not an standard abbreviation "TMR" defined for thermal
in IA32 Architectures Software Developer's Manual.
3.Though we could understand it as Thermal Monitor Register, it is
easy to be misunderstood as a *TIMER* interrupt also.
I think this patch will fix it.
Signed-off-by: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Reviewed-by: Jean Delvare <khali@linux-fr.org>
Cc: Brown Len <len.brown@intel.com>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
LKML-Reference: <4C7C492D.5020704@np.css.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Old 32-bit AMD CPUs (all w/o L3 cache) should always return 0
for cpuid_edx(0x80000006).
For unknown reason the 32-bit implementation differed from the
64-bit implementation. See commit 67cddd94799 ("i386: Add L3 cache
support to AMD CPUID4 emulation"). The current check is the
result of the x86 merge.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <20100902133710.GA5449@loge.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current code tramples over bit F3x90[6] which can be used to
disable GART table walk probes. However, this bit should be set
for performance reasons (speed up GART table walks). We are
allowed to do that since we put GART tables in UC memory later
anyway. Make it so.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
LKML-Reference: <1283531981-7495-3-git-send-email-bp@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a GARTEN so use that and drop the duplicate.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
LKML-Reference: <1283531981-7495-2-git-send-email-bp@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The explicit saving and restoring of %ebx was confusing stack
unwind data consumers, and it is plain unnecessary to do this
within the asm(), since that was only introduced for PIC user
mode consumers of the original _syscall3() macro this was
derived from.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Arnd Bergmann <arnd@arndb.de>
LKML-Reference: <4C7FBC660200007800013F95@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
... plus additionally introduce {push,pop}f{l,q}_cfi. All in the
hope that the code becomes better readable this way (it gets
quite a bit smaller in any case).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Alexander van Heukelum <heukelum@fastmail.fm>
LKML-Reference: <4C7FBDA40200007800013FAF@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When these stubs are actual functions (i.e. having a return
instruction) and have stack manipulation instructions in them,
they should also be annotated to allow unwinding through them.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Alexander van Heukelum <heukelum@fastmail.fm>
LKML-Reference: <4C7FBCF00200007800013F99@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>