sklearn/examples/decomposition/plot_faces_decomposition.py

337 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
============================
Faces dataset decompositions
============================
This example applies to :ref:`olivetti_faces_dataset` different unsupervised
matrix decomposition (dimension reduction) methods from the module
:mod:`sklearn.decomposition` (see the documentation chapter
:ref:`decompositions`).
- Authors: Vlad Niculae, Alexandre Gramfort
- License: BSD 3 clause
"""
# %%
# Dataset preparation
# -------------------
#
# Loading and preprocessing the Olivetti faces dataset.
import logging
import matplotlib.pyplot as plt
from numpy.random import RandomState
from sklearn import cluster, decomposition
from sklearn.datasets import fetch_olivetti_faces
rng = RandomState(0)
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
faces, _ = fetch_olivetti_faces(return_X_y=True, shuffle=True, random_state=rng)
n_samples, n_features = faces.shape
# Global centering (focus on one feature, centering all samples)
faces_centered = faces - faces.mean(axis=0)
# Local centering (focus on one sample, centering all features)
faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)
print("Dataset consists of %d faces" % n_samples)
# %%
# Define a base function to plot the gallery of faces.
n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)
def plot_gallery(title, images, n_col=n_col, n_row=n_row, cmap=plt.cm.gray):
fig, axs = plt.subplots(
nrows=n_row,
ncols=n_col,
figsize=(2.0 * n_col, 2.3 * n_row),
facecolor="white",
constrained_layout=True,
)
fig.set_constrained_layout_pads(w_pad=0.01, h_pad=0.02, hspace=0, wspace=0)
fig.set_edgecolor("black")
fig.suptitle(title, size=16)
for ax, vec in zip(axs.flat, images):
vmax = max(vec.max(), -vec.min())
im = ax.imshow(
vec.reshape(image_shape),
cmap=cmap,
interpolation="nearest",
vmin=-vmax,
vmax=vmax,
)
ax.axis("off")
fig.colorbar(im, ax=axs, orientation="horizontal", shrink=0.99, aspect=40, pad=0.01)
plt.show()
# %%
# Let's take a look at our data. Gray color indicates negative values,
# white indicates positive values.
plot_gallery("Faces from dataset", faces_centered[:n_components])
# %%
# Decomposition
# -------------
#
# Initialise different estimators for decomposition and fit each
# of them on all images and plot some results. Each estimator extracts
# 6 components as vectors :math:`h \in \mathbb{R}^{4096}`.
# We just displayed these vectors in human-friendly visualisation as 64x64 pixel images.
#
# Read more in the :ref:`User Guide <decompositions>`.
# %%
# Eigenfaces - PCA using randomized SVD
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Linear dimensionality reduction using Singular Value Decomposition (SVD) of the data
# to project it to a lower dimensional space.
#
#
# .. note::
#
# The Eigenfaces estimator, via the :py:mod:`sklearn.decomposition.PCA`,
# also provides a scalar `noise_variance_` (the mean of pixelwise variance)
# that cannot be displayed as an image.
# %%
pca_estimator = decomposition.PCA(
n_components=n_components, svd_solver="randomized", whiten=True
)
pca_estimator.fit(faces_centered)
plot_gallery(
"Eigenfaces - PCA using randomized SVD", pca_estimator.components_[:n_components]
)
# %%
# Non-negative components - NMF
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Estimate non-negative original data as production of two non-negative matrices.
# %%
nmf_estimator = decomposition.NMF(n_components=n_components, tol=5e-3)
nmf_estimator.fit(faces) # original non- negative dataset
plot_gallery("Non-negative components - NMF", nmf_estimator.components_[:n_components])
# %%
# Independent components - FastICA
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Independent component analysis separates a multivariate vectors into additive
# subcomponents that are maximally independent.
# %%
ica_estimator = decomposition.FastICA(
n_components=n_components, max_iter=400, whiten="arbitrary-variance", tol=15e-5
)
ica_estimator.fit(faces_centered)
plot_gallery(
"Independent components - FastICA", ica_estimator.components_[:n_components]
)
# %%
# Sparse components - MiniBatchSparsePCA
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Mini-batch sparse PCA (:class:`~sklearn.decomposition.MiniBatchSparsePCA`)
# extracts the set of sparse components that best reconstruct the data. This
# variant is faster but less accurate than the similar
# :class:`~sklearn.decomposition.SparsePCA`.
# %%
batch_pca_estimator = decomposition.MiniBatchSparsePCA(
n_components=n_components, alpha=0.1, max_iter=100, batch_size=3, random_state=rng
)
batch_pca_estimator.fit(faces_centered)
plot_gallery(
"Sparse components - MiniBatchSparsePCA",
batch_pca_estimator.components_[:n_components],
)
# %%
# Dictionary learning
# ^^^^^^^^^^^^^^^^^^^
#
# By default, :class:`~sklearn.decomposition.MiniBatchDictionaryLearning`
# divides the data into mini-batches and optimizes in an online manner by
# cycling over the mini-batches for the specified number of iterations.
# %%
batch_dict_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components, alpha=0.1, max_iter=50, batch_size=3, random_state=rng
)
batch_dict_estimator.fit(faces_centered)
plot_gallery("Dictionary learning", batch_dict_estimator.components_[:n_components])
# %%
# Cluster centers - MiniBatchKMeans
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :class:`sklearn.cluster.MiniBatchKMeans` is computationally efficient and
# implements on-line learning with a
# :meth:`~sklearn.cluster.MiniBatchKMeans.partial_fit` method. That is
# why it could be beneficial to enhance some time-consuming algorithms with
# :class:`~sklearn.cluster.MiniBatchKMeans`.
# %%
kmeans_estimator = cluster.MiniBatchKMeans(
n_clusters=n_components,
tol=1e-3,
batch_size=20,
max_iter=50,
random_state=rng,
)
kmeans_estimator.fit(faces_centered)
plot_gallery(
"Cluster centers - MiniBatchKMeans",
kmeans_estimator.cluster_centers_[:n_components],
)
# %%
# Factor Analysis components - FA
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :class:`~sklearn.decomposition.FactorAnalysis` is similar to
# :class:`~sklearn.decomposition.PCA` but has the advantage of modelling the
# variance in every direction of the input space independently (heteroscedastic
# noise). Read more in the :ref:`User Guide <FA>`.
# %%
fa_estimator = decomposition.FactorAnalysis(n_components=n_components, max_iter=20)
fa_estimator.fit(faces_centered)
plot_gallery("Factor Analysis (FA)", fa_estimator.components_[:n_components])
# --- Pixelwise variance
plt.figure(figsize=(3.2, 3.6), facecolor="white", tight_layout=True)
vec = fa_estimator.noise_variance_
vmax = max(vec.max(), -vec.min())
plt.imshow(
vec.reshape(image_shape),
cmap=plt.cm.gray,
interpolation="nearest",
vmin=-vmax,
vmax=vmax,
)
plt.axis("off")
plt.title("Pixelwise variance from \n Factor Analysis (FA)", size=16, wrap=True)
plt.colorbar(orientation="horizontal", shrink=0.8, pad=0.03)
plt.show()
# %%
# Decomposition: Dictionary learning
# ----------------------------------
#
# In the further section, let's consider :ref:`DictionaryLearning` more precisely.
# Dictionary learning is a problem that amounts to finding a sparse representation
# of the input data as a combination of simple elements. These simple elements form
# a dictionary. It is possible to constrain the dictionary and/or coding coefficients
# to be positive to match constraints that may be present in the data.
#
# :class:`~sklearn.decomposition.MiniBatchDictionaryLearning` implements a
# faster, but less accurate version of the dictionary learning algorithm that
# is better suited for large datasets. Read more in the :ref:`User Guide
# <MiniBatchDictionaryLearning>`.
# %%
# Plot the same samples from our dataset but with another colormap.
# Red indicates negative values, blue indicates positive values,
# and white represents zeros.
plot_gallery("Faces from dataset", faces_centered[:n_components], cmap=plt.cm.RdBu)
# %%
# Similar to the previous examples, we change parameters and train
# :class:`~sklearn.decomposition.MiniBatchDictionaryLearning` estimator on all
# images. Generally, the dictionary learning and sparse encoding decompose
# input data into the dictionary and the coding coefficients matrices. :math:`X
# \approx UV`, where :math:`X = [x_1, . . . , x_n]`, :math:`X \in
# \mathbb{R}^{m×n}`, dictionary :math:`U \in \mathbb{R}^{m×k}`, coding
# coefficients :math:`V \in \mathbb{R}^{k×n}`.
#
# Also below are the results when the dictionary and coding
# coefficients are positively constrained.
# %%
# Dictionary learning - positive dictionary
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In the following section we enforce positivity when finding the dictionary.
# %%
dict_pos_dict_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components,
alpha=0.1,
max_iter=50,
batch_size=3,
random_state=rng,
positive_dict=True,
)
dict_pos_dict_estimator.fit(faces_centered)
plot_gallery(
"Dictionary learning - positive dictionary",
dict_pos_dict_estimator.components_[:n_components],
cmap=plt.cm.RdBu,
)
# %%
# Dictionary learning - positive code
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Below we constrain the coding coefficients as a positive matrix.
# %%
dict_pos_code_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components,
alpha=0.1,
max_iter=50,
batch_size=3,
fit_algorithm="cd",
random_state=rng,
positive_code=True,
)
dict_pos_code_estimator.fit(faces_centered)
plot_gallery(
"Dictionary learning - positive code",
dict_pos_code_estimator.components_[:n_components],
cmap=plt.cm.RdBu,
)
# %%
# Dictionary learning - positive dictionary & code
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Also below are the results if the dictionary values and coding
# coefficients are positively constrained.
# %%
dict_pos_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components,
alpha=0.1,
max_iter=50,
batch_size=3,
fit_algorithm="cd",
random_state=rng,
positive_dict=True,
positive_code=True,
)
dict_pos_estimator.fit(faces_centered)
plot_gallery(
"Dictionary learning - positive dictionary & code",
dict_pos_estimator.components_[:n_components],
cmap=plt.cm.RdBu,
)