62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
"""
|
|
========================================================================
|
|
Illustration of Gaussian process classification (GPC) on the XOR dataset
|
|
========================================================================
|
|
|
|
This example illustrates GPC on XOR data. Compared are a stationary, isotropic
|
|
kernel (RBF) and a non-stationary kernel (DotProduct). On this particular
|
|
dataset, the DotProduct kernel obtains considerably better results because the
|
|
class-boundaries are linear and coincide with the coordinate axes. In general,
|
|
stationary kernels often obtain better results.
|
|
|
|
"""
|
|
|
|
# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
|
#
|
|
# License: BSD 3 clause
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from sklearn.gaussian_process import GaussianProcessClassifier
|
|
from sklearn.gaussian_process.kernels import RBF, DotProduct
|
|
|
|
xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50))
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randn(200, 2)
|
|
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
|
|
|
|
# fit the model
|
|
plt.figure(figsize=(10, 5))
|
|
kernels = [1.0 * RBF(length_scale=1.15), 1.0 * DotProduct(sigma_0=1.0) ** 2]
|
|
for i, kernel in enumerate(kernels):
|
|
clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y)
|
|
|
|
# plot the decision function for each datapoint on the grid
|
|
Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1]
|
|
Z = Z.reshape(xx.shape)
|
|
|
|
plt.subplot(1, 2, i + 1)
|
|
image = plt.imshow(
|
|
Z,
|
|
interpolation="nearest",
|
|
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
|
|
aspect="auto",
|
|
origin="lower",
|
|
cmap=plt.cm.PuOr_r,
|
|
)
|
|
contours = plt.contour(xx, yy, Z, levels=[0.5], linewidths=2, colors=["k"])
|
|
plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors=(0, 0, 0))
|
|
plt.xticks(())
|
|
plt.yticks(())
|
|
plt.axis([-3, 3, -3, 3])
|
|
plt.colorbar(image)
|
|
plt.title(
|
|
"%s\n Log-Marginal-Likelihood:%.3f"
|
|
% (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)),
|
|
fontsize=12,
|
|
)
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|