76 lines
2.1 KiB
Python
76 lines
2.1 KiB
Python
"""
|
|
=================================================
|
|
Demo of affinity propagation clustering algorithm
|
|
=================================================
|
|
|
|
Reference:
|
|
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
|
Between Data Points", Science Feb. 2007
|
|
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
from sklearn import metrics
|
|
from sklearn.cluster import AffinityPropagation
|
|
from sklearn.datasets import make_blobs
|
|
|
|
# %%
|
|
# Generate sample data
|
|
# --------------------
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(
|
|
n_samples=300, centers=centers, cluster_std=0.5, random_state=0
|
|
)
|
|
|
|
# %%
|
|
# Compute Affinity Propagation
|
|
# ----------------------------
|
|
af = AffinityPropagation(preference=-50, random_state=0).fit(X)
|
|
cluster_centers_indices = af.cluster_centers_indices_
|
|
labels = af.labels_
|
|
|
|
n_clusters_ = len(cluster_centers_indices)
|
|
|
|
print("Estimated number of clusters: %d" % n_clusters_)
|
|
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
|
|
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
|
|
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
|
|
print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
|
|
print(
|
|
"Adjusted Mutual Information: %0.3f"
|
|
% metrics.adjusted_mutual_info_score(labels_true, labels)
|
|
)
|
|
print(
|
|
"Silhouette Coefficient: %0.3f"
|
|
% metrics.silhouette_score(X, labels, metric="sqeuclidean")
|
|
)
|
|
|
|
# %%
|
|
# Plot result
|
|
# -----------
|
|
import matplotlib.pyplot as plt
|
|
|
|
plt.close("all")
|
|
plt.figure(1)
|
|
plt.clf()
|
|
|
|
colors = plt.cycler("color", plt.cm.viridis(np.linspace(0, 1, 4)))
|
|
|
|
for k, col in zip(range(n_clusters_), colors):
|
|
class_members = labels == k
|
|
cluster_center = X[cluster_centers_indices[k]]
|
|
plt.scatter(
|
|
X[class_members, 0], X[class_members, 1], color=col["color"], marker="."
|
|
)
|
|
plt.scatter(
|
|
cluster_center[0], cluster_center[1], s=14, color=col["color"], marker="o"
|
|
)
|
|
for x in X[class_members]:
|
|
plt.plot(
|
|
[cluster_center[0], x[0]], [cluster_center[1], x[1]], color=col["color"]
|
|
)
|
|
|
|
plt.title("Estimated number of clusters: %d" % n_clusters_)
|
|
plt.show()
|