57 lines
1.7 KiB
Python
57 lines
1.7 KiB
Python
"""
|
|
==============================================
|
|
A demo of the Spectral Co-Clustering algorithm
|
|
==============================================
|
|
|
|
This example demonstrates how to generate a dataset and bicluster it
|
|
using the Spectral Co-Clustering algorithm.
|
|
|
|
The dataset is generated using the ``make_biclusters`` function, which
|
|
creates a matrix of small values and implants bicluster with large
|
|
values. The rows and columns are then shuffled and passed to the
|
|
Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to
|
|
make biclusters contiguous shows how accurately the algorithm found
|
|
the biclusters.
|
|
|
|
"""
|
|
|
|
# Author: Kemal Eren <kemal@kemaleren.com>
|
|
# License: BSD 3 clause
|
|
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
|
|
from sklearn.cluster import SpectralCoclustering
|
|
from sklearn.datasets import make_biclusters
|
|
from sklearn.metrics import consensus_score
|
|
|
|
data, rows, columns = make_biclusters(
|
|
shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0
|
|
)
|
|
|
|
plt.matshow(data, cmap=plt.cm.Blues)
|
|
plt.title("Original dataset")
|
|
|
|
# shuffle clusters
|
|
rng = np.random.RandomState(0)
|
|
row_idx = rng.permutation(data.shape[0])
|
|
col_idx = rng.permutation(data.shape[1])
|
|
data = data[row_idx][:, col_idx]
|
|
|
|
plt.matshow(data, cmap=plt.cm.Blues)
|
|
plt.title("Shuffled dataset")
|
|
|
|
model = SpectralCoclustering(n_clusters=5, random_state=0)
|
|
model.fit(data)
|
|
score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx]))
|
|
|
|
print("consensus score: {:.3f}".format(score))
|
|
|
|
fit_data = data[np.argsort(model.row_labels_)]
|
|
fit_data = fit_data[:, np.argsort(model.column_labels_)]
|
|
|
|
plt.matshow(fit_data, cmap=plt.cm.Blues)
|
|
plt.title("After biclustering; rearranged to show biclusters")
|
|
|
|
plt.show()
|