67 lines
2.1 KiB
Python
67 lines
2.1 KiB
Python
|
"""
|
||
|
=========================================================
|
||
|
SVM Tie Breaking Example
|
||
|
=========================================================
|
||
|
Tie breaking is costly if ``decision_function_shape='ovr'``, and therefore it
|
||
|
is not enabled by default. This example illustrates the effect of the
|
||
|
``break_ties`` parameter for a multiclass classification problem and
|
||
|
``decision_function_shape='ovr'``.
|
||
|
|
||
|
The two plots differ only in the area in the middle where the classes are
|
||
|
tied. If ``break_ties=False``, all input in that area would be classified as
|
||
|
one class, whereas if ``break_ties=True``, the tie-breaking mechanism will
|
||
|
create a non-convex decision boundary in that area.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Code source: Andreas Mueller, Adrin Jalali
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.svm import SVC
|
||
|
|
||
|
X, y = make_blobs(random_state=27)
|
||
|
|
||
|
fig, sub = plt.subplots(2, 1, figsize=(5, 8))
|
||
|
titles = ("break_ties = False", "break_ties = True")
|
||
|
|
||
|
for break_ties, title, ax in zip((False, True), titles, sub.flatten()):
|
||
|
svm = SVC(
|
||
|
kernel="linear", C=1, break_ties=break_ties, decision_function_shape="ovr"
|
||
|
).fit(X, y)
|
||
|
|
||
|
xlim = [X[:, 0].min(), X[:, 0].max()]
|
||
|
ylim = [X[:, 1].min(), X[:, 1].max()]
|
||
|
|
||
|
xs = np.linspace(xlim[0], xlim[1], 1000)
|
||
|
ys = np.linspace(ylim[0], ylim[1], 1000)
|
||
|
xx, yy = np.meshgrid(xs, ys)
|
||
|
|
||
|
pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])
|
||
|
|
||
|
colors = [plt.cm.Accent(i) for i in [0, 4, 7]]
|
||
|
|
||
|
points = ax.scatter(X[:, 0], X[:, 1], c=y, cmap="Accent")
|
||
|
classes = [(0, 1), (0, 2), (1, 2)]
|
||
|
line = np.linspace(X[:, 1].min() - 5, X[:, 1].max() + 5)
|
||
|
ax.imshow(
|
||
|
-pred.reshape(xx.shape),
|
||
|
cmap="Accent",
|
||
|
alpha=0.2,
|
||
|
extent=(xlim[0], xlim[1], ylim[1], ylim[0]),
|
||
|
)
|
||
|
|
||
|
for coef, intercept, col in zip(svm.coef_, svm.intercept_, classes):
|
||
|
line2 = -(line * coef[1] + intercept) / coef[0]
|
||
|
ax.plot(line2, line, "-", c=colors[col[0]])
|
||
|
ax.plot(line2, line, "--", c=colors[col[1]])
|
||
|
ax.set_xlim(xlim)
|
||
|
ax.set_ylim(ylim)
|
||
|
ax.set_title(title)
|
||
|
ax.set_aspect("equal")
|
||
|
|
||
|
plt.show()
|