45 lines
1.2 KiB
Python
45 lines
1.2 KiB
Python
|
"""
|
||
|
=========================================
|
||
|
SGD: Maximum margin separating hyperplane
|
||
|
=========================================
|
||
|
|
||
|
Plot the maximum margin separating hyperplane within a two-class
|
||
|
separable dataset using a linear Support Vector Machines classifier
|
||
|
trained using SGD.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.linear_model import SGDClassifier
|
||
|
|
||
|
# we create 50 separable points
|
||
|
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)
|
||
|
|
||
|
# fit the model
|
||
|
clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200)
|
||
|
|
||
|
clf.fit(X, Y)
|
||
|
|
||
|
# plot the line, the points, and the nearest vectors to the plane
|
||
|
xx = np.linspace(-1, 5, 10)
|
||
|
yy = np.linspace(-1, 5, 10)
|
||
|
|
||
|
X1, X2 = np.meshgrid(xx, yy)
|
||
|
Z = np.empty(X1.shape)
|
||
|
for (i, j), val in np.ndenumerate(X1):
|
||
|
x1 = val
|
||
|
x2 = X2[i, j]
|
||
|
p = clf.decision_function([[x1, x2]])
|
||
|
Z[i, j] = p[0]
|
||
|
levels = [-1.0, 0.0, 1.0]
|
||
|
linestyles = ["dashed", "solid", "dashed"]
|
||
|
colors = "k"
|
||
|
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
|
||
|
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolor="black", s=20)
|
||
|
|
||
|
plt.axis("tight")
|
||
|
plt.show()
|