55 lines
1.3 KiB
Python
55 lines
1.3 KiB
Python
|
"""
|
||
|
==============
|
||
|
SGD: Penalties
|
||
|
==============
|
||
|
|
||
|
Contours of where the penalty is equal to 1
|
||
|
for the three penalties L1, L2 and elastic-net.
|
||
|
|
||
|
All of the above are supported by :class:`~sklearn.linear_model.SGDClassifier`
|
||
|
and :class:`~sklearn.linear_model.SGDRegressor`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
l1_color = "navy"
|
||
|
l2_color = "c"
|
||
|
elastic_net_color = "darkorange"
|
||
|
|
||
|
line = np.linspace(-1.5, 1.5, 1001)
|
||
|
xx, yy = np.meshgrid(line, line)
|
||
|
|
||
|
l2 = xx**2 + yy**2
|
||
|
l1 = np.abs(xx) + np.abs(yy)
|
||
|
rho = 0.5
|
||
|
elastic_net = rho * l1 + (1 - rho) * l2
|
||
|
|
||
|
plt.figure(figsize=(10, 10), dpi=100)
|
||
|
ax = plt.gca()
|
||
|
|
||
|
elastic_net_contour = plt.contour(
|
||
|
xx, yy, elastic_net, levels=[1], colors=elastic_net_color
|
||
|
)
|
||
|
l2_contour = plt.contour(xx, yy, l2, levels=[1], colors=l2_color)
|
||
|
l1_contour = plt.contour(xx, yy, l1, levels=[1], colors=l1_color)
|
||
|
ax.set_aspect("equal")
|
||
|
ax.spines["left"].set_position("center")
|
||
|
ax.spines["right"].set_color("none")
|
||
|
ax.spines["bottom"].set_position("center")
|
||
|
ax.spines["top"].set_color("none")
|
||
|
|
||
|
plt.clabel(
|
||
|
elastic_net_contour,
|
||
|
inline=1,
|
||
|
fontsize=18,
|
||
|
fmt={1.0: "elastic-net"},
|
||
|
manual=[(-1, -1)],
|
||
|
)
|
||
|
plt.clabel(l2_contour, inline=1, fontsize=18, fmt={1.0: "L2"}, manual=[(-1, -1)])
|
||
|
plt.clabel(l1_contour, inline=1, fontsize=18, fmt={1.0: "L1"}, manual=[(-1, -1)])
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|