121 lines
3.9 KiB
Python
121 lines
3.9 KiB
Python
|
"""
|
||
|
===========================================
|
||
|
Sparse coding with a precomputed dictionary
|
||
|
===========================================
|
||
|
|
||
|
Transform a signal as a sparse combination of Ricker wavelets. This example
|
||
|
visually compares different sparse coding methods using the
|
||
|
:class:`~sklearn.decomposition.SparseCoder` estimator. The Ricker (also known
|
||
|
as Mexican hat or the second derivative of a Gaussian) is not a particularly
|
||
|
good kernel to represent piecewise constant signals like this one. It can
|
||
|
therefore be seen how much adding different widths of atoms matters and it
|
||
|
therefore motivates learning the dictionary to best fit your type of signals.
|
||
|
|
||
|
The richer dictionary on the right is not larger in size, heavier subsampling
|
||
|
is performed in order to stay on the same order of magnitude.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.decomposition import SparseCoder
|
||
|
|
||
|
|
||
|
def ricker_function(resolution, center, width):
|
||
|
"""Discrete sub-sampled Ricker (Mexican hat) wavelet"""
|
||
|
x = np.linspace(0, resolution - 1, resolution)
|
||
|
x = (
|
||
|
(2 / (np.sqrt(3 * width) * np.pi**0.25))
|
||
|
* (1 - (x - center) ** 2 / width**2)
|
||
|
* np.exp(-((x - center) ** 2) / (2 * width**2))
|
||
|
)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def ricker_matrix(width, resolution, n_components):
|
||
|
"""Dictionary of Ricker (Mexican hat) wavelets"""
|
||
|
centers = np.linspace(0, resolution - 1, n_components)
|
||
|
D = np.empty((n_components, resolution))
|
||
|
for i, center in enumerate(centers):
|
||
|
D[i] = ricker_function(resolution, center, width)
|
||
|
D /= np.sqrt(np.sum(D**2, axis=1))[:, np.newaxis]
|
||
|
return D
|
||
|
|
||
|
|
||
|
resolution = 1024
|
||
|
subsampling = 3 # subsampling factor
|
||
|
width = 100
|
||
|
n_components = resolution // subsampling
|
||
|
|
||
|
# Compute a wavelet dictionary
|
||
|
D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components)
|
||
|
D_multi = np.r_[
|
||
|
tuple(
|
||
|
ricker_matrix(width=w, resolution=resolution, n_components=n_components // 5)
|
||
|
for w in (10, 50, 100, 500, 1000)
|
||
|
)
|
||
|
]
|
||
|
|
||
|
# Generate a signal
|
||
|
y = np.linspace(0, resolution - 1, resolution)
|
||
|
first_quarter = y < resolution / 4
|
||
|
y[first_quarter] = 3.0
|
||
|
y[np.logical_not(first_quarter)] = -1.0
|
||
|
|
||
|
# List the different sparse coding methods in the following format:
|
||
|
# (title, transform_algorithm, transform_alpha,
|
||
|
# transform_n_nozero_coefs, color)
|
||
|
estimators = [
|
||
|
("OMP", "omp", None, 15, "navy"),
|
||
|
("Lasso", "lasso_lars", 2, None, "turquoise"),
|
||
|
]
|
||
|
lw = 2
|
||
|
|
||
|
plt.figure(figsize=(13, 6))
|
||
|
for subplot, (D, title) in enumerate(
|
||
|
zip((D_fixed, D_multi), ("fixed width", "multiple widths"))
|
||
|
):
|
||
|
plt.subplot(1, 2, subplot + 1)
|
||
|
plt.title("Sparse coding against %s dictionary" % title)
|
||
|
plt.plot(y, lw=lw, linestyle="--", label="Original signal")
|
||
|
# Do a wavelet approximation
|
||
|
for title, algo, alpha, n_nonzero, color in estimators:
|
||
|
coder = SparseCoder(
|
||
|
dictionary=D,
|
||
|
transform_n_nonzero_coefs=n_nonzero,
|
||
|
transform_alpha=alpha,
|
||
|
transform_algorithm=algo,
|
||
|
)
|
||
|
x = coder.transform(y.reshape(1, -1))
|
||
|
density = len(np.flatnonzero(x))
|
||
|
x = np.ravel(np.dot(x, D))
|
||
|
squared_error = np.sum((y - x) ** 2)
|
||
|
plt.plot(
|
||
|
x,
|
||
|
color=color,
|
||
|
lw=lw,
|
||
|
label="%s: %s nonzero coefs,\n%.2f error" % (title, density, squared_error),
|
||
|
)
|
||
|
|
||
|
# Soft thresholding debiasing
|
||
|
coder = SparseCoder(
|
||
|
dictionary=D, transform_algorithm="threshold", transform_alpha=20
|
||
|
)
|
||
|
x = coder.transform(y.reshape(1, -1))
|
||
|
_, idx = np.where(x != 0)
|
||
|
x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y, rcond=None)
|
||
|
x = np.ravel(np.dot(x, D))
|
||
|
squared_error = np.sum((y - x) ** 2)
|
||
|
plt.plot(
|
||
|
x,
|
||
|
color="darkorange",
|
||
|
lw=lw,
|
||
|
label="Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error"
|
||
|
% (len(idx), squared_error),
|
||
|
)
|
||
|
plt.axis("tight")
|
||
|
plt.legend(shadow=False, loc="best")
|
||
|
plt.subplots_adjust(0.04, 0.07, 0.97, 0.90, 0.09, 0.2)
|
||
|
plt.show()
|