114 lines
3.5 KiB
Python
114 lines
3.5 KiB
Python
|
"""
|
||
|
==============================================
|
||
|
Feature agglomeration vs. univariate selection
|
||
|
==============================================
|
||
|
|
||
|
This example compares 2 dimensionality reduction strategies:
|
||
|
|
||
|
- univariate feature selection with Anova
|
||
|
|
||
|
- feature agglomeration with Ward hierarchical clustering
|
||
|
|
||
|
Both methods are compared in a regression problem using
|
||
|
a BayesianRidge as supervised estimator.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
# %%
|
||
|
import shutil
|
||
|
import tempfile
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from joblib import Memory
|
||
|
from scipy import linalg, ndimage
|
||
|
|
||
|
from sklearn import feature_selection
|
||
|
from sklearn.cluster import FeatureAgglomeration
|
||
|
from sklearn.feature_extraction.image import grid_to_graph
|
||
|
from sklearn.linear_model import BayesianRidge
|
||
|
from sklearn.model_selection import GridSearchCV, KFold
|
||
|
from sklearn.pipeline import Pipeline
|
||
|
|
||
|
# %%
|
||
|
# Set parameters
|
||
|
n_samples = 200
|
||
|
size = 40 # image size
|
||
|
roi_size = 15
|
||
|
snr = 5.0
|
||
|
np.random.seed(0)
|
||
|
|
||
|
# %%
|
||
|
# Generate data
|
||
|
coef = np.zeros((size, size))
|
||
|
coef[0:roi_size, 0:roi_size] = -1.0
|
||
|
coef[-roi_size:, -roi_size:] = 1.0
|
||
|
|
||
|
X = np.random.randn(n_samples, size**2)
|
||
|
for x in X: # smooth data
|
||
|
x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel()
|
||
|
X -= X.mean(axis=0)
|
||
|
X /= X.std(axis=0)
|
||
|
|
||
|
y = np.dot(X, coef.ravel())
|
||
|
|
||
|
# %%
|
||
|
# add noise
|
||
|
noise = np.random.randn(y.shape[0])
|
||
|
noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.0)) / linalg.norm(noise, 2)
|
||
|
y += noise_coef * noise
|
||
|
|
||
|
# %%
|
||
|
# Compute the coefs of a Bayesian Ridge with GridSearch
|
||
|
cv = KFold(2) # cross-validation generator for model selection
|
||
|
ridge = BayesianRidge()
|
||
|
cachedir = tempfile.mkdtemp()
|
||
|
mem = Memory(location=cachedir, verbose=1)
|
||
|
|
||
|
# %%
|
||
|
# Ward agglomeration followed by BayesianRidge
|
||
|
connectivity = grid_to_graph(n_x=size, n_y=size)
|
||
|
ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem)
|
||
|
clf = Pipeline([("ward", ward), ("ridge", ridge)])
|
||
|
# Select the optimal number of parcels with grid search
|
||
|
clf = GridSearchCV(clf, {"ward__n_clusters": [10, 20, 30]}, n_jobs=1, cv=cv)
|
||
|
clf.fit(X, y) # set the best parameters
|
||
|
coef_ = clf.best_estimator_.steps[-1][1].coef_
|
||
|
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
|
||
|
coef_agglomeration_ = coef_.reshape(size, size)
|
||
|
|
||
|
# %%
|
||
|
# Anova univariate feature selection followed by BayesianRidge
|
||
|
f_regression = mem.cache(feature_selection.f_regression) # caching function
|
||
|
anova = feature_selection.SelectPercentile(f_regression)
|
||
|
clf = Pipeline([("anova", anova), ("ridge", ridge)])
|
||
|
# Select the optimal percentage of features with grid search
|
||
|
clf = GridSearchCV(clf, {"anova__percentile": [5, 10, 20]}, cv=cv)
|
||
|
clf.fit(X, y) # set the best parameters
|
||
|
coef_ = clf.best_estimator_.steps[-1][1].coef_
|
||
|
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1))
|
||
|
coef_selection_ = coef_.reshape(size, size)
|
||
|
|
||
|
# %%
|
||
|
# Inverse the transformation to plot the results on an image
|
||
|
plt.close("all")
|
||
|
plt.figure(figsize=(7.3, 2.7))
|
||
|
plt.subplot(1, 3, 1)
|
||
|
plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r)
|
||
|
plt.title("True weights")
|
||
|
plt.subplot(1, 3, 2)
|
||
|
plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r)
|
||
|
plt.title("Feature Selection")
|
||
|
plt.subplot(1, 3, 3)
|
||
|
plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r)
|
||
|
plt.title("Feature Agglomeration")
|
||
|
plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26)
|
||
|
plt.show()
|
||
|
|
||
|
# %%
|
||
|
# Attempt to remove the temporary cachedir, but don't worry if it fails
|
||
|
shutil.rmtree(cachedir, ignore_errors=True)
|