148 lines
4.5 KiB
Python
148 lines
4.5 KiB
Python
|
"""
|
||
|
================================================
|
||
|
Varying regularization in Multi-layer Perceptron
|
||
|
================================================
|
||
|
|
||
|
A comparison of different values for regularization parameter 'alpha' on
|
||
|
synthetic datasets. The plot shows that different alphas yield different
|
||
|
decision functions.
|
||
|
|
||
|
Alpha is a parameter for regularization term, aka penalty term, that combats
|
||
|
overfitting by constraining the size of the weights. Increasing alpha may fix
|
||
|
high variance (a sign of overfitting) by encouraging smaller weights, resulting
|
||
|
in a decision boundary plot that appears with lesser curvatures.
|
||
|
Similarly, decreasing alpha may fix high bias (a sign of underfitting) by
|
||
|
encouraging larger weights, potentially resulting in a more complicated
|
||
|
decision boundary.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Author: Issam H. Laradji
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
from matplotlib import pyplot as plt
|
||
|
from matplotlib.colors import ListedColormap
|
||
|
|
||
|
from sklearn.datasets import make_circles, make_classification, make_moons
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.neural_network import MLPClassifier
|
||
|
from sklearn.pipeline import make_pipeline
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
|
||
|
h = 0.02 # step size in the mesh
|
||
|
|
||
|
alphas = np.logspace(-1, 1, 5)
|
||
|
|
||
|
classifiers = []
|
||
|
names = []
|
||
|
for alpha in alphas:
|
||
|
classifiers.append(
|
||
|
make_pipeline(
|
||
|
StandardScaler(),
|
||
|
MLPClassifier(
|
||
|
solver="lbfgs",
|
||
|
alpha=alpha,
|
||
|
random_state=1,
|
||
|
max_iter=2000,
|
||
|
early_stopping=True,
|
||
|
hidden_layer_sizes=[10, 10],
|
||
|
),
|
||
|
)
|
||
|
)
|
||
|
names.append(f"alpha {alpha:.2f}")
|
||
|
|
||
|
X, y = make_classification(
|
||
|
n_features=2, n_redundant=0, n_informative=2, random_state=0, n_clusters_per_class=1
|
||
|
)
|
||
|
rng = np.random.RandomState(2)
|
||
|
X += 2 * rng.uniform(size=X.shape)
|
||
|
linearly_separable = (X, y)
|
||
|
|
||
|
datasets = [
|
||
|
make_moons(noise=0.3, random_state=0),
|
||
|
make_circles(noise=0.2, factor=0.5, random_state=1),
|
||
|
linearly_separable,
|
||
|
]
|
||
|
|
||
|
figure = plt.figure(figsize=(17, 9))
|
||
|
i = 1
|
||
|
# iterate over datasets
|
||
|
for X, y in datasets:
|
||
|
# split into training and test part
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
X, y, test_size=0.4, random_state=42
|
||
|
)
|
||
|
|
||
|
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
|
||
|
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
|
||
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
||
|
|
||
|
# just plot the dataset first
|
||
|
cm = plt.cm.RdBu
|
||
|
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
|
||
|
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
|
||
|
# Plot the training points
|
||
|
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
|
||
|
# and testing points
|
||
|
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
|
||
|
ax.set_xlim(xx.min(), xx.max())
|
||
|
ax.set_ylim(yy.min(), yy.max())
|
||
|
ax.set_xticks(())
|
||
|
ax.set_yticks(())
|
||
|
i += 1
|
||
|
|
||
|
# iterate over classifiers
|
||
|
for name, clf in zip(names, classifiers):
|
||
|
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
|
||
|
clf.fit(X_train, y_train)
|
||
|
score = clf.score(X_test, y_test)
|
||
|
|
||
|
# Plot the decision boundary. For that, we will assign a color to each
|
||
|
# point in the mesh [x_min, x_max] x [y_min, y_max].
|
||
|
if hasattr(clf, "decision_function"):
|
||
|
Z = clf.decision_function(np.column_stack([xx.ravel(), yy.ravel()]))
|
||
|
else:
|
||
|
Z = clf.predict_proba(np.column_stack([xx.ravel(), yy.ravel()]))[:, 1]
|
||
|
|
||
|
# Put the result into a color plot
|
||
|
Z = Z.reshape(xx.shape)
|
||
|
ax.contourf(xx, yy, Z, cmap=cm, alpha=0.8)
|
||
|
|
||
|
# Plot also the training points
|
||
|
ax.scatter(
|
||
|
X_train[:, 0],
|
||
|
X_train[:, 1],
|
||
|
c=y_train,
|
||
|
cmap=cm_bright,
|
||
|
edgecolors="black",
|
||
|
s=25,
|
||
|
)
|
||
|
# and testing points
|
||
|
ax.scatter(
|
||
|
X_test[:, 0],
|
||
|
X_test[:, 1],
|
||
|
c=y_test,
|
||
|
cmap=cm_bright,
|
||
|
alpha=0.6,
|
||
|
edgecolors="black",
|
||
|
s=25,
|
||
|
)
|
||
|
|
||
|
ax.set_xlim(xx.min(), xx.max())
|
||
|
ax.set_ylim(yy.min(), yy.max())
|
||
|
ax.set_xticks(())
|
||
|
ax.set_yticks(())
|
||
|
ax.set_title(name)
|
||
|
ax.text(
|
||
|
xx.max() - 0.3,
|
||
|
yy.min() + 0.3,
|
||
|
f"{score:.3f}".lstrip("0"),
|
||
|
size=15,
|
||
|
horizontalalignment="right",
|
||
|
)
|
||
|
i += 1
|
||
|
|
||
|
figure.subplots_adjust(left=0.02, right=0.98)
|
||
|
plt.show()
|