sklearn/examples/miscellaneous/plot_johnson_lindenstrauss_...

209 lines
7.3 KiB
Python
Raw Permalink Normal View History

2024-08-05 09:32:03 +02:00
r"""
=====================================================================
The Johnson-Lindenstrauss bound for embedding with random projections
=====================================================================
The `Johnson-Lindenstrauss lemma`_ states that any high dimensional
dataset can be randomly projected into a lower dimensional Euclidean
space while controlling the distortion in the pairwise distances.
.. _`Johnson-Lindenstrauss lemma`: https://en.wikipedia.org/wiki/\
Johnson%E2%80%93Lindenstrauss_lemma
"""
import sys
from time import time
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import fetch_20newsgroups_vectorized, load_digits
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.random_projection import (
SparseRandomProjection,
johnson_lindenstrauss_min_dim,
)
# %%
# Theoretical bounds
# ==================
# The distortion introduced by a random projection `p` is asserted by
# the fact that `p` is defining an eps-embedding with good probability
# as defined by:
#
# .. math::
# (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2
#
# Where `u` and `v` are any rows taken from a dataset of shape `(n_samples,
# n_features)` and `p` is a projection by a random Gaussian `N(0, 1)` matrix
# of shape `(n_components, n_features)` (or a sparse Achlioptas matrix).
#
# The minimum number of components to guarantees the eps-embedding is
# given by:
#
# .. math::
# n\_components \geq 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3)
#
#
# The first plot shows that with an increasing number of samples ``n_samples``,
# the minimal number of dimensions ``n_components`` increased logarithmically
# in order to guarantee an ``eps``-embedding.
# range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))
# range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)
plt.figure()
for eps, color in zip(eps_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)
plt.legend([f"eps = {eps:0.1f}" for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
plt.show()
# %%
# The second plot shows that an increase of the admissible
# distortion ``eps`` allows to reduce drastically the minimal number of
# dimensions ``n_components`` for a given number of samples ``n_samples``
# range of admissible distortions
eps_range = np.linspace(0.01, 0.99, 100)
# range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))
plt.figure()
for n_samples, color in zip(n_samples_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)
plt.legend([f"n_samples = {n}" for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")
plt.show()
# %%
# Empirical validation
# ====================
#
# We validate the above bounds on the 20 newsgroups text document
# (TF-IDF word frequencies) dataset or on the digits dataset:
#
# - for the 20 newsgroups dataset some 300 documents with 100k
# features in total are projected using a sparse random matrix to smaller
# euclidean spaces with various values for the target number of dimensions
# ``n_components``.
#
# - for the digits dataset, some 8x8 gray level pixels data for 300
# handwritten digits pictures are randomly projected to spaces for various
# larger number of dimensions ``n_components``.
#
# The default dataset is the 20 newsgroups dataset. To run the example on the
# digits dataset, pass the ``--use-digits-dataset`` command line argument to
# this script.
if "--use-digits-dataset" in sys.argv:
data = load_digits().data[:300]
else:
data = fetch_20newsgroups_vectorized().data[:300]
# %%
# For each value of ``n_components``, we plot:
#
# - 2D distribution of sample pairs with pairwise distances in original
# and projected spaces as x- and y-axis respectively.
#
# - 1D histogram of the ratio of those distances (projected / original).
n_samples, n_features = data.shape
print(
f"Embedding {n_samples} samples with dim {n_features} using various "
"random projections"
)
n_components_range = np.array([300, 1_000, 10_000])
dists = euclidean_distances(data, squared=True).ravel()
# select only non-identical samples pairs
nonzero = dists != 0
dists = dists[nonzero]
for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print(
f"Projected {n_samples} samples from {n_features} to {n_components} in "
f"{time() - t0:0.3f}s"
)
if hasattr(rp, "components_"):
n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print(f"Random matrix with size: {n_bytes / 1e6:0.3f} MB")
projected_dists = euclidean_distances(projected_data, squared=True).ravel()[nonzero]
plt.figure()
min_dist = min(projected_dists.min(), dists.min())
max_dist = max(projected_dists.max(), dists.max())
plt.hexbin(
dists,
projected_dists,
gridsize=100,
cmap=plt.cm.PuBu,
extent=[min_dist, max_dist, min_dist, max_dist],
)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" % n_components)
cb = plt.colorbar()
cb.set_label("Sample pairs counts")
rates = projected_dists / dists
print(f"Mean distances rate: {np.mean(rates):.2f} ({np.std(rates):.2f})")
plt.figure()
plt.hist(rates, bins=50, range=(0.0, 2.0), edgecolor="k", density=True)
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components)
# TODO: compute the expected value of eps and add them to the previous plot
# as vertical lines / region
plt.show()
# %%
# We can see that for low values of ``n_components`` the distribution is wide
# with many distorted pairs and a skewed distribution (due to the hard
# limit of zero ratio on the left as distances are always positives)
# while for larger values of `n_components` the distortion is controlled
# and the distances are well preserved by the random projection.
#
# Remarks
# =======
#
# According to the JL lemma, projecting 300 samples without too much distortion
# will require at least several thousands dimensions, irrespective of the
# number of features of the original dataset.
#
# Hence using random projections on the digits dataset which only has 64
# features in the input space does not make sense: it does not allow
# for dimensionality reduction in this case.
#
# On the twenty newsgroups on the other hand the dimensionality can be
# decreased from 56,436 down to 10,000 while reasonably preserving
# pairwise distances.