64 lines
2.2 KiB
Python
64 lines
2.2 KiB
Python
|
"""
|
||
|
=====================================================
|
||
|
Gaussian process classification (GPC) on iris dataset
|
||
|
=====================================================
|
||
|
|
||
|
This example illustrates the predicted probability of GPC for an isotropic
|
||
|
and anisotropic RBF kernel on a two-dimensional version for the iris-dataset.
|
||
|
The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by
|
||
|
assigning different length-scales to the two feature dimensions.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn import datasets
|
||
|
from sklearn.gaussian_process import GaussianProcessClassifier
|
||
|
from sklearn.gaussian_process.kernels import RBF
|
||
|
|
||
|
# import some data to play with
|
||
|
iris = datasets.load_iris()
|
||
|
X = iris.data[:, :2] # we only take the first two features.
|
||
|
y = np.array(iris.target, dtype=int)
|
||
|
|
||
|
h = 0.02 # step size in the mesh
|
||
|
|
||
|
kernel = 1.0 * RBF([1.0])
|
||
|
gpc_rbf_isotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
kernel = 1.0 * RBF([1.0, 1.0])
|
||
|
gpc_rbf_anisotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
|
||
|
# create a mesh to plot in
|
||
|
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
||
|
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
||
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
||
|
|
||
|
titles = ["Isotropic RBF", "Anisotropic RBF"]
|
||
|
plt.figure(figsize=(10, 5))
|
||
|
for i, clf in enumerate((gpc_rbf_isotropic, gpc_rbf_anisotropic)):
|
||
|
# Plot the predicted probabilities. For that, we will assign a color to
|
||
|
# each point in the mesh [x_min, m_max]x[y_min, y_max].
|
||
|
plt.subplot(1, 2, i + 1)
|
||
|
|
||
|
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])
|
||
|
|
||
|
# Put the result into a color plot
|
||
|
Z = Z.reshape((xx.shape[0], xx.shape[1], 3))
|
||
|
plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower")
|
||
|
|
||
|
# Plot also the training points
|
||
|
plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y], edgecolors=(0, 0, 0))
|
||
|
plt.xlabel("Sepal length")
|
||
|
plt.ylabel("Sepal width")
|
||
|
plt.xlim(xx.min(), xx.max())
|
||
|
plt.ylim(yy.min(), yy.max())
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
plt.title(
|
||
|
"%s, LML: %.3f" % (titles[i], clf.log_marginal_likelihood(clf.kernel_.theta))
|
||
|
)
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|