110 lines
3.2 KiB
Python
110 lines
3.2 KiB
Python
|
"""
|
||
|
=====================
|
||
|
Monotonic Constraints
|
||
|
=====================
|
||
|
|
||
|
This example illustrates the effect of monotonic constraints on a gradient
|
||
|
boosting estimator.
|
||
|
|
||
|
We build an artificial dataset where the target value is in general
|
||
|
positively correlated with the first feature (with some random and
|
||
|
non-random variations), and in general negatively correlated with the second
|
||
|
feature.
|
||
|
|
||
|
By imposing a monotonic increase or a monotonic decrease constraint, respectively,
|
||
|
on the features during the learning process, the estimator is able to properly follow
|
||
|
the general trend instead of being subject to the variations.
|
||
|
|
||
|
This example was inspired by the `XGBoost documentation
|
||
|
<https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html>`_.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# %%
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.ensemble import HistGradientBoostingRegressor
|
||
|
from sklearn.inspection import PartialDependenceDisplay
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
n_samples = 1000
|
||
|
f_0 = rng.rand(n_samples)
|
||
|
f_1 = rng.rand(n_samples)
|
||
|
X = np.c_[f_0, f_1]
|
||
|
noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
|
||
|
|
||
|
# y is positively correlated with f_0, and negatively correlated with f_1
|
||
|
y = 5 * f_0 + np.sin(10 * np.pi * f_0) - 5 * f_1 - np.cos(10 * np.pi * f_1) + noise
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# Fit a first model on this dataset without any constraints.
|
||
|
gbdt_no_cst = HistGradientBoostingRegressor()
|
||
|
gbdt_no_cst.fit(X, y)
|
||
|
|
||
|
# %%
|
||
|
# Fit a second model on this dataset with monotonic increase (1)
|
||
|
# and a monotonic decrease (-1) constraints, respectively.
|
||
|
gbdt_with_monotonic_cst = HistGradientBoostingRegressor(monotonic_cst=[1, -1])
|
||
|
gbdt_with_monotonic_cst.fit(X, y)
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# Let's display the partial dependence of the predictions on the two features.
|
||
|
fig, ax = plt.subplots()
|
||
|
disp = PartialDependenceDisplay.from_estimator(
|
||
|
gbdt_no_cst,
|
||
|
X,
|
||
|
features=[0, 1],
|
||
|
feature_names=(
|
||
|
"First feature",
|
||
|
"Second feature",
|
||
|
),
|
||
|
line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"},
|
||
|
ax=ax,
|
||
|
)
|
||
|
PartialDependenceDisplay.from_estimator(
|
||
|
gbdt_with_monotonic_cst,
|
||
|
X,
|
||
|
features=[0, 1],
|
||
|
line_kw={"linewidth": 4, "label": "constrained", "color": "tab:orange"},
|
||
|
ax=disp.axes_,
|
||
|
)
|
||
|
|
||
|
for f_idx in (0, 1):
|
||
|
disp.axes_[0, f_idx].plot(
|
||
|
X[:, f_idx], y, "o", alpha=0.3, zorder=-1, color="tab:green"
|
||
|
)
|
||
|
disp.axes_[0, f_idx].set_ylim(-6, 6)
|
||
|
|
||
|
plt.legend()
|
||
|
fig.suptitle("Monotonic constraints effect on partial dependences")
|
||
|
plt.show()
|
||
|
|
||
|
# %%
|
||
|
# We can see that the predictions of the unconstrained model capture the
|
||
|
# oscillations of the data while the constrained model follows the general
|
||
|
# trend and ignores the local variations.
|
||
|
|
||
|
# %%
|
||
|
# .. _monotonic_cst_features_names:
|
||
|
#
|
||
|
# Using feature names to specify monotonic constraints
|
||
|
# ----------------------------------------------------
|
||
|
#
|
||
|
# Note that if the training data has feature names, it's possible to specify the
|
||
|
# monotonic constraints by passing a dictionary:
|
||
|
import pandas as pd
|
||
|
|
||
|
X_df = pd.DataFrame(X, columns=["f_0", "f_1"])
|
||
|
|
||
|
gbdt_with_monotonic_cst_df = HistGradientBoostingRegressor(
|
||
|
monotonic_cst={"f_0": 1, "f_1": -1}
|
||
|
).fit(X_df, y)
|
||
|
|
||
|
np.allclose(
|
||
|
gbdt_with_monotonic_cst_df.predict(X_df), gbdt_with_monotonic_cst.predict(X)
|
||
|
)
|