163 lines
4.7 KiB
Python
163 lines
4.7 KiB
Python
|
"""
|
||
|
===================================================
|
||
|
Faces recognition example using eigenfaces and SVMs
|
||
|
===================================================
|
||
|
|
||
|
The dataset used in this example is a preprocessed excerpt of the
|
||
|
"Labeled Faces in the Wild", aka LFW_:
|
||
|
|
||
|
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)
|
||
|
|
||
|
.. _LFW: http://vis-www.cs.umass.edu/lfw/
|
||
|
|
||
|
"""
|
||
|
|
||
|
# %%
|
||
|
from time import time
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
from scipy.stats import loguniform
|
||
|
|
||
|
from sklearn.datasets import fetch_lfw_people
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.metrics import ConfusionMatrixDisplay, classification_report
|
||
|
from sklearn.model_selection import RandomizedSearchCV, train_test_split
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.svm import SVC
|
||
|
|
||
|
# %%
|
||
|
# Download the data, if not already on disk and load it as numpy arrays
|
||
|
|
||
|
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
|
||
|
|
||
|
# introspect the images arrays to find the shapes (for plotting)
|
||
|
n_samples, h, w = lfw_people.images.shape
|
||
|
|
||
|
# for machine learning we use the 2 data directly (as relative pixel
|
||
|
# positions info is ignored by this model)
|
||
|
X = lfw_people.data
|
||
|
n_features = X.shape[1]
|
||
|
|
||
|
# the label to predict is the id of the person
|
||
|
y = lfw_people.target
|
||
|
target_names = lfw_people.target_names
|
||
|
n_classes = target_names.shape[0]
|
||
|
|
||
|
print("Total dataset size:")
|
||
|
print("n_samples: %d" % n_samples)
|
||
|
print("n_features: %d" % n_features)
|
||
|
print("n_classes: %d" % n_classes)
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# Split into a training set and a test and keep 25% of the data for testing.
|
||
|
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
X, y, test_size=0.25, random_state=42
|
||
|
)
|
||
|
|
||
|
scaler = StandardScaler()
|
||
|
X_train = scaler.fit_transform(X_train)
|
||
|
X_test = scaler.transform(X_test)
|
||
|
|
||
|
# %%
|
||
|
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
|
||
|
# dataset): unsupervised feature extraction / dimensionality reduction
|
||
|
|
||
|
n_components = 150
|
||
|
|
||
|
print(
|
||
|
"Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])
|
||
|
)
|
||
|
t0 = time()
|
||
|
pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train)
|
||
|
print("done in %0.3fs" % (time() - t0))
|
||
|
|
||
|
eigenfaces = pca.components_.reshape((n_components, h, w))
|
||
|
|
||
|
print("Projecting the input data on the eigenfaces orthonormal basis")
|
||
|
t0 = time()
|
||
|
X_train_pca = pca.transform(X_train)
|
||
|
X_test_pca = pca.transform(X_test)
|
||
|
print("done in %0.3fs" % (time() - t0))
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# Train a SVM classification model
|
||
|
|
||
|
print("Fitting the classifier to the training set")
|
||
|
t0 = time()
|
||
|
param_grid = {
|
||
|
"C": loguniform(1e3, 1e5),
|
||
|
"gamma": loguniform(1e-4, 1e-1),
|
||
|
}
|
||
|
clf = RandomizedSearchCV(
|
||
|
SVC(kernel="rbf", class_weight="balanced"), param_grid, n_iter=10
|
||
|
)
|
||
|
clf = clf.fit(X_train_pca, y_train)
|
||
|
print("done in %0.3fs" % (time() - t0))
|
||
|
print("Best estimator found by grid search:")
|
||
|
print(clf.best_estimator_)
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# Quantitative evaluation of the model quality on the test set
|
||
|
|
||
|
print("Predicting people's names on the test set")
|
||
|
t0 = time()
|
||
|
y_pred = clf.predict(X_test_pca)
|
||
|
print("done in %0.3fs" % (time() - t0))
|
||
|
|
||
|
print(classification_report(y_test, y_pred, target_names=target_names))
|
||
|
ConfusionMatrixDisplay.from_estimator(
|
||
|
clf, X_test_pca, y_test, display_labels=target_names, xticks_rotation="vertical"
|
||
|
)
|
||
|
plt.tight_layout()
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# Qualitative evaluation of the predictions using matplotlib
|
||
|
|
||
|
|
||
|
def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
|
||
|
"""Helper function to plot a gallery of portraits"""
|
||
|
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
|
||
|
plt.subplots_adjust(bottom=0, left=0.01, right=0.99, top=0.90, hspace=0.35)
|
||
|
for i in range(n_row * n_col):
|
||
|
plt.subplot(n_row, n_col, i + 1)
|
||
|
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
|
||
|
plt.title(titles[i], size=12)
|
||
|
plt.xticks(())
|
||
|
plt.yticks(())
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# plot the result of the prediction on a portion of the test set
|
||
|
|
||
|
|
||
|
def title(y_pred, y_test, target_names, i):
|
||
|
pred_name = target_names[y_pred[i]].rsplit(" ", 1)[-1]
|
||
|
true_name = target_names[y_test[i]].rsplit(" ", 1)[-1]
|
||
|
return "predicted: %s\ntrue: %s" % (pred_name, true_name)
|
||
|
|
||
|
|
||
|
prediction_titles = [
|
||
|
title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])
|
||
|
]
|
||
|
|
||
|
plot_gallery(X_test, prediction_titles, h, w)
|
||
|
# %%
|
||
|
# plot the gallery of the most significative eigenfaces
|
||
|
|
||
|
eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
|
||
|
plot_gallery(eigenfaces, eigenface_titles, h, w)
|
||
|
|
||
|
plt.show()
|
||
|
|
||
|
# %%
|
||
|
# Face recognition problem would be much more effectively solved by training
|
||
|
# convolutional neural networks but this family of models is outside of the scope of
|
||
|
# the scikit-learn library. Interested readers should instead try to use pytorch or
|
||
|
# tensorflow to implement such models.
|