 668f62ec62
			
		
	
	
		668f62ec62
		
	
	
	
	
		
			
			When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away.  Convert
    if (!foo(..., &err)) {
        ...
        error_propagate(errp, err);
        ...
        return ...
    }
to
    if (!foo(..., errp)) {
        ...
        ...
        return ...
    }
where nothing else needs @err.  Coccinelle script:
    @rule1 forall@
    identifier fun, err, errp, lbl;
    expression list args, args2;
    binary operator op;
    constant c1, c2;
    symbol false;
    @@
         if (
    (
    -        fun(args, &err, args2)
    +        fun(args, errp, args2)
    |
    -        !fun(args, &err, args2)
    +        !fun(args, errp, args2)
    |
    -        fun(args, &err, args2) op c1
    +        fun(args, errp, args2) op c1
    )
            )
         {
             ... when != err
                 when != lbl:
                 when strict
    -        error_propagate(errp, err);
             ... when != err
    (
             return;
    |
             return c2;
    |
             return false;
    )
         }
    @rule2 forall@
    identifier fun, err, errp, lbl;
    expression list args, args2;
    expression var;
    binary operator op;
    constant c1, c2;
    symbol false;
    @@
    -    var = fun(args, &err, args2);
    +    var = fun(args, errp, args2);
         ... when != err
         if (
    (
             var
    |
             !var
    |
             var op c1
    )
            )
         {
             ... when != err
                 when != lbl:
                 when strict
    -        error_propagate(errp, err);
             ... when != err
    (
             return;
    |
             return c2;
    |
             return false;
    |
             return var;
    )
         }
    @depends on rule1 || rule2@
    identifier err;
    @@
    -    Error *err = NULL;
         ... when != err
Not exactly elegant, I'm afraid.
The "when != lbl:" is necessary to avoid transforming
         if (fun(args, &err)) {
             goto out
         }
         ...
     out:
         error_propagate(errp, err);
even though other paths to label out still need the error_propagate().
For an actual example, see sclp_realize().
Without the "when strict", Coccinelle transforms vfio_msix_setup(),
incorrectly.  I don't know what exactly "when strict" does, only that
it helps here.
The match of return is narrower than what I want, but I can't figure
out how to express "return where the operand doesn't use @err".  For
an example where it's too narrow, see vfio_intx_enable().
Silently fails to convert hw/arm/armsse.c, because Coccinelle gets
confused by ARMSSE being used both as typedef and function-like macro
there.  Converted manually.
Line breaks tidied up manually.  One nested declaration of @local_err
deleted manually.  Preexisting unwanted blank line dropped in
hw/riscv/sifive_e.c.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-35-armbru@redhat.com>
		
	
			
		
			
				
	
	
		
			1792 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1792 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU PowerPC sPAPR XIVE interrupt controller model
 | |
|  *
 | |
|  * Copyright (c) 2017-2018, IBM Corporation.
 | |
|  *
 | |
|  * This code is licensed under the GPL version 2 or later. See the
 | |
|  * COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/module.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "target/ppc/cpu.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/reset.h"
 | |
| #include "migration/vmstate.h"
 | |
| #include "monitor/monitor.h"
 | |
| #include "hw/ppc/fdt.h"
 | |
| #include "hw/ppc/spapr.h"
 | |
| #include "hw/ppc/spapr_cpu_core.h"
 | |
| #include "hw/ppc/spapr_xive.h"
 | |
| #include "hw/ppc/xive.h"
 | |
| #include "hw/ppc/xive_regs.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| 
 | |
| /*
 | |
|  * XIVE Virtualization Controller BAR and Thread Managment BAR that we
 | |
|  * use for the ESB pages and the TIMA pages
 | |
|  */
 | |
| #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
 | |
| #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
 | |
| 
 | |
| /*
 | |
|  * The allocation of VP blocks is a complex operation in OPAL and the
 | |
|  * VP identifiers have a relation with the number of HW chips, the
 | |
|  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
 | |
|  * controller model does not have the same constraints and can use a
 | |
|  * simple mapping scheme of the CPU vcpu_id
 | |
|  *
 | |
|  * These identifiers are never returned to the OS.
 | |
|  */
 | |
| 
 | |
| #define SPAPR_XIVE_NVT_BASE 0x400
 | |
| 
 | |
| /*
 | |
|  * sPAPR NVT and END indexing helpers
 | |
|  */
 | |
| static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
 | |
| {
 | |
|     return nvt_idx - SPAPR_XIVE_NVT_BASE;
 | |
| }
 | |
| 
 | |
| static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
 | |
|                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
 | |
| {
 | |
|     assert(cpu);
 | |
| 
 | |
|     if (out_nvt_blk) {
 | |
|         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
 | |
|     }
 | |
| 
 | |
|     if (out_nvt_blk) {
 | |
|         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int spapr_xive_target_to_nvt(uint32_t target,
 | |
|                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
 | |
| {
 | |
|     PowerPCCPU *cpu = spapr_find_cpu(target);
 | |
| 
 | |
|     if (!cpu) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
 | |
|  * priorities per CPU
 | |
|  */
 | |
| int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
 | |
|                              uint32_t *out_server, uint8_t *out_prio)
 | |
| {
 | |
| 
 | |
|     assert(end_blk == SPAPR_XIVE_BLOCK_ID);
 | |
| 
 | |
|     if (out_server) {
 | |
|         *out_server = end_idx >> 3;
 | |
|     }
 | |
| 
 | |
|     if (out_prio) {
 | |
|         *out_prio = end_idx & 0x7;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
 | |
|                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
 | |
| {
 | |
|     assert(cpu);
 | |
| 
 | |
|     if (out_end_blk) {
 | |
|         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
 | |
|     }
 | |
| 
 | |
|     if (out_end_idx) {
 | |
|         *out_end_idx = (cpu->vcpu_id << 3) + prio;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
 | |
|                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
 | |
| {
 | |
|     PowerPCCPU *cpu = spapr_find_cpu(target);
 | |
| 
 | |
|     if (!cpu) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On sPAPR machines, use a simplified output for the XIVE END
 | |
|  * structure dumping only the information related to the OS EQ.
 | |
|  */
 | |
| static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
 | |
|                                           Monitor *mon)
 | |
| {
 | |
|     uint64_t qaddr_base = xive_end_qaddr(end);
 | |
|     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
 | |
|     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
 | |
|     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
 | |
|     uint32_t qentries = 1 << (qsize + 10);
 | |
|     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
 | |
|     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
 | |
| 
 | |
|     monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
 | |
|                    spapr_xive_nvt_to_target(0, nvt),
 | |
|                    priority, qindex, qentries, qaddr_base, qgen);
 | |
| 
 | |
|     xive_end_queue_pic_print_info(end, 6, mon);
 | |
| }
 | |
| 
 | |
| void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
 | |
| {
 | |
|     XiveSource *xsrc = &xive->source;
 | |
|     int i;
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         Error *local_err = NULL;
 | |
| 
 | |
|         kvmppc_xive_synchronize_state(xive, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
 | |
| 
 | |
|     for (i = 0; i < xive->nr_irqs; i++) {
 | |
|         uint8_t pq = xive_source_esb_get(xsrc, i);
 | |
|         XiveEAS *eas = &xive->eat[i];
 | |
| 
 | |
|         if (!xive_eas_is_valid(eas)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
 | |
|                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
 | |
|                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
 | |
|                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
 | |
|                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
 | |
|                        xive_eas_is_masked(eas) ? "M" : " ",
 | |
|                        (int) xive_get_field64(EAS_END_DATA, eas->w));
 | |
| 
 | |
|         if (!xive_eas_is_masked(eas)) {
 | |
|             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
 | |
|             XiveEND *end;
 | |
| 
 | |
|             assert(end_idx < xive->nr_ends);
 | |
|             end = &xive->endt[end_idx];
 | |
| 
 | |
|             if (xive_end_is_valid(end)) {
 | |
|                 spapr_xive_end_pic_print_info(xive, end, mon);
 | |
|             }
 | |
|         }
 | |
|         monitor_printf(mon, "\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
 | |
| {
 | |
|     memory_region_set_enabled(&xive->source.esb_mmio, enable);
 | |
|     memory_region_set_enabled(&xive->tm_mmio, enable);
 | |
| 
 | |
|     /* Disable the END ESBs until a guest OS makes use of them */
 | |
|     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
 | |
| }
 | |
| 
 | |
| static void spapr_xive_tm_write(void *opaque, hwaddr offset,
 | |
|                           uint64_t value, unsigned size)
 | |
| {
 | |
|     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
 | |
| 
 | |
|     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
 | |
| }
 | |
| 
 | |
| static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
 | |
| {
 | |
|     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
 | |
| 
 | |
|     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
 | |
| }
 | |
| 
 | |
| const MemoryRegionOps spapr_xive_tm_ops = {
 | |
|     .read = spapr_xive_tm_read,
 | |
|     .write = spapr_xive_tm_write,
 | |
|     .endianness = DEVICE_BIG_ENDIAN,
 | |
|     .valid = {
 | |
|         .min_access_size = 1,
 | |
|         .max_access_size = 8,
 | |
|     },
 | |
|     .impl = {
 | |
|         .min_access_size = 1,
 | |
|         .max_access_size = 8,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void spapr_xive_end_reset(XiveEND *end)
 | |
| {
 | |
|     memset(end, 0, sizeof(*end));
 | |
| 
 | |
|     /* switch off the escalation and notification ESBs */
 | |
|     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
 | |
| }
 | |
| 
 | |
| static void spapr_xive_reset(void *dev)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(dev);
 | |
|     int i;
 | |
| 
 | |
|     /*
 | |
|      * The XiveSource has its own reset handler, which mask off all
 | |
|      * IRQs (!P|Q)
 | |
|      */
 | |
| 
 | |
|     /* Mask all valid EASs in the IRQ number space. */
 | |
|     for (i = 0; i < xive->nr_irqs; i++) {
 | |
|         XiveEAS *eas = &xive->eat[i];
 | |
|         if (xive_eas_is_valid(eas)) {
 | |
|             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
 | |
|         } else {
 | |
|             eas->w = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear all ENDs */
 | |
|     for (i = 0; i < xive->nr_ends; i++) {
 | |
|         spapr_xive_end_reset(&xive->endt[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_xive_instance_init(Object *obj)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(obj);
 | |
| 
 | |
|     object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
 | |
| 
 | |
|     object_initialize_child(obj, "end_source", &xive->end_source,
 | |
|                             TYPE_XIVE_END_SOURCE);
 | |
| 
 | |
|     /* Not connected to the KVM XIVE device */
 | |
|     xive->fd = -1;
 | |
| }
 | |
| 
 | |
| static void spapr_xive_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(dev);
 | |
|     SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
 | |
|     XiveSource *xsrc = &xive->source;
 | |
|     XiveENDSource *end_xsrc = &xive->end_source;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     sxc->parent_realize(dev, &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!xive->nr_irqs) {
 | |
|         error_setg(errp, "Number of interrupt needs to be greater 0");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!xive->nr_ends) {
 | |
|         error_setg(errp, "Number of interrupt needs to be greater 0");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Initialize the internal sources, for IPIs and virtual devices.
 | |
|      */
 | |
|     object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
 | |
|                             &error_fatal);
 | |
|     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
 | |
|     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
 | |
|         return;
 | |
|     }
 | |
|     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
 | |
| 
 | |
|     /*
 | |
|      * Initialize the END ESB source
 | |
|      */
 | |
|     object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
 | |
|                             &error_fatal);
 | |
|     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
 | |
|                              &error_abort);
 | |
|     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
 | |
|         return;
 | |
|     }
 | |
|     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
 | |
| 
 | |
|     /* Set the mapping address of the END ESB pages after the source ESBs */
 | |
|     xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
 | |
| 
 | |
|     /*
 | |
|      * Allocate the routing tables
 | |
|      */
 | |
|     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
 | |
|     xive->endt = g_new0(XiveEND, xive->nr_ends);
 | |
| 
 | |
|     xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
 | |
|                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
 | |
| 
 | |
|     qemu_register_reset(spapr_xive_reset, dev);
 | |
| 
 | |
|     /* TIMA initialization */
 | |
|     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
 | |
|                           xive, "xive.tima", 4ull << TM_SHIFT);
 | |
|     sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
 | |
| 
 | |
|     /*
 | |
|      * Map all regions. These will be enabled or disabled at reset and
 | |
|      * can also be overridden by KVM memory regions if active
 | |
|      */
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
 | |
| }
 | |
| 
 | |
| static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
 | |
|                               uint32_t eas_idx, XiveEAS *eas)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(xrtr);
 | |
| 
 | |
|     if (eas_idx >= xive->nr_irqs) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *eas = xive->eat[eas_idx];
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int spapr_xive_get_end(XiveRouter *xrtr,
 | |
|                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(xrtr);
 | |
| 
 | |
|     if (end_idx >= xive->nr_ends) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
 | |
|                                 uint32_t end_idx, XiveEND *end,
 | |
|                                 uint8_t word_number)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(xrtr);
 | |
| 
 | |
|     if (end_idx >= xive->nr_ends) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int spapr_xive_get_nvt(XiveRouter *xrtr,
 | |
|                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
 | |
| {
 | |
|     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
 | |
|     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
 | |
| 
 | |
|     if (!cpu) {
 | |
|         /* TODO: should we assert() if we can find a NVT ? */
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * sPAPR does not maintain a NVT table. Return that the NVT is
 | |
|      * valid if we have found a matching CPU
 | |
|      */
 | |
|     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
 | |
|                                 uint32_t nvt_idx, XiveNVT *nvt,
 | |
|                                 uint8_t word_number)
 | |
| {
 | |
|     /*
 | |
|      * We don't need to write back to the NVTs because the sPAPR
 | |
|      * machine should never hit a non-scheduled NVT. It should never
 | |
|      * get called.
 | |
|      */
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
 | |
|                                 uint8_t nvt_blk, uint32_t nvt_idx,
 | |
|                                 bool cam_ignore, uint8_t priority,
 | |
|                                 uint32_t logic_serv, XiveTCTXMatch *match)
 | |
| {
 | |
|     CPUState *cs;
 | |
|     int count = 0;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|         XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
 | |
|         int ring;
 | |
| 
 | |
|         /*
 | |
|          * Skip partially initialized vCPUs. This can happen when
 | |
|          * vCPUs are hotplugged.
 | |
|          */
 | |
|         if (!tctx) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Check the thread context CAM lines and record matches.
 | |
|          */
 | |
|         ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
 | |
|                                          cam_ignore, logic_serv);
 | |
|         /*
 | |
|          * Save the matching thread interrupt context and follow on to
 | |
|          * check for duplicates which are invalid.
 | |
|          */
 | |
|         if (ring != -1) {
 | |
|             if (match->tctx) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
 | |
|                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
 | |
|                 return -1;
 | |
|             }
 | |
| 
 | |
|             match->ring = ring;
 | |
|             match->tctx = tctx;
 | |
|             count++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
 | |
| {
 | |
|     return SPAPR_XIVE_BLOCK_ID;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_xive_end = {
 | |
|     .name = TYPE_SPAPR_XIVE "/end",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (VMStateField []) {
 | |
|         VMSTATE_UINT32(w0, XiveEND),
 | |
|         VMSTATE_UINT32(w1, XiveEND),
 | |
|         VMSTATE_UINT32(w2, XiveEND),
 | |
|         VMSTATE_UINT32(w3, XiveEND),
 | |
|         VMSTATE_UINT32(w4, XiveEND),
 | |
|         VMSTATE_UINT32(w5, XiveEND),
 | |
|         VMSTATE_UINT32(w6, XiveEND),
 | |
|         VMSTATE_UINT32(w7, XiveEND),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_xive_eas = {
 | |
|     .name = TYPE_SPAPR_XIVE "/eas",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (VMStateField []) {
 | |
|         VMSTATE_UINT64(w, XiveEAS),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static int vmstate_spapr_xive_pre_save(void *opaque)
 | |
| {
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by the sPAPR IRQ backend 'post_load' method at the machine
 | |
|  * level.
 | |
|  */
 | |
| static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
 | |
| {
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_spapr_xive = {
 | |
|     .name = TYPE_SPAPR_XIVE,
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .pre_save = vmstate_spapr_xive_pre_save,
 | |
|     .post_load = NULL, /* handled at the machine level */
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
 | |
|         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
 | |
|                                      vmstate_spapr_xive_eas, XiveEAS),
 | |
|         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
 | |
|                                              vmstate_spapr_xive_end, XiveEND),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
| };
 | |
| 
 | |
| static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
 | |
|                                 bool lsi, Error **errp)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
|     XiveSource *xsrc = &xive->source;
 | |
| 
 | |
|     assert(lisn < xive->nr_irqs);
 | |
| 
 | |
|     if (xive_eas_is_valid(&xive->eat[lisn])) {
 | |
|         error_setg(errp, "IRQ %d is not free", lisn);
 | |
|         return -EBUSY;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Set default values when allocating an IRQ number
 | |
|      */
 | |
|     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
 | |
|     if (lsi) {
 | |
|         xive_source_irq_set_lsi(xsrc, lisn);
 | |
|     }
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
|     assert(lisn < xive->nr_irqs);
 | |
| 
 | |
|     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
 | |
| }
 | |
| 
 | |
| static Property spapr_xive_properties[] = {
 | |
|     DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
 | |
|     DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
 | |
|     DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
 | |
|     DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
 | |
|                                       PowerPCCPU *cpu, Error **errp)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
|     Object *obj;
 | |
|     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
 | |
|     if (!obj) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     spapr_cpu->tctx = XIVE_TCTX(obj);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
 | |
| {
 | |
|     uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
 | |
|     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
 | |
| }
 | |
| 
 | |
| static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
 | |
|                                      PowerPCCPU *cpu)
 | |
| {
 | |
|     XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
 | |
|     uint8_t  nvt_blk;
 | |
|     uint32_t nvt_idx;
 | |
| 
 | |
|     xive_tctx_reset(tctx);
 | |
| 
 | |
|     /*
 | |
|      * When a Virtual Processor is scheduled to run on a HW thread,
 | |
|      * the hypervisor pushes its identifier in the OS CAM line.
 | |
|      * Emulate the same behavior under QEMU.
 | |
|      */
 | |
|     spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
 | |
| 
 | |
|     xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
 | |
| }
 | |
| 
 | |
| static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
 | |
|                                         PowerPCCPU *cpu)
 | |
| {
 | |
|     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     xive_tctx_destroy(spapr_cpu->tctx);
 | |
|     spapr_cpu->tctx = NULL;
 | |
| }
 | |
| 
 | |
| static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         kvmppc_xive_source_set_irq(&xive->source, irq, val);
 | |
|     } else {
 | |
|         xive_source_set_irq(&xive->source, irq, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
| 
 | |
|         xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
 | |
|     }
 | |
| 
 | |
|     spapr_xive_pic_print_info(xive, mon);
 | |
| }
 | |
| 
 | |
| static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
 | |
|                           void *fdt, uint32_t phandle)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
|     int node;
 | |
|     uint64_t timas[2 * 2];
 | |
|     /* Interrupt number ranges for the IPIs */
 | |
|     uint32_t lisn_ranges[] = {
 | |
|         cpu_to_be32(SPAPR_IRQ_IPI),
 | |
|         cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
 | |
|     };
 | |
|     /*
 | |
|      * EQ size - the sizes of pages supported by the system 4K, 64K,
 | |
|      * 2M, 16M. We only advertise 64K for the moment.
 | |
|      */
 | |
|     uint32_t eq_sizes[] = {
 | |
|         cpu_to_be32(16), /* 64K */
 | |
|     };
 | |
|     /*
 | |
|      * The following array is in sync with the reserved priorities
 | |
|      * defined by the 'spapr_xive_priority_is_reserved' routine.
 | |
|      */
 | |
|     uint32_t plat_res_int_priorities[] = {
 | |
|         cpu_to_be32(7),    /* start */
 | |
|         cpu_to_be32(0xf8), /* count */
 | |
|     };
 | |
| 
 | |
|     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
 | |
|     timas[0] = cpu_to_be64(xive->tm_base +
 | |
|                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
 | |
|     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
 | |
|     timas[2] = cpu_to_be64(xive->tm_base +
 | |
|                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
 | |
|     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
 | |
| 
 | |
|     _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
 | |
| 
 | |
|     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
 | |
|     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
 | |
| 
 | |
|     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
 | |
|     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
 | |
|                      sizeof(eq_sizes)));
 | |
|     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
 | |
|                      sizeof(lisn_ranges)));
 | |
| 
 | |
|     /* For Linux to link the LSIs to the interrupt controller. */
 | |
|     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
 | |
|     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
 | |
| 
 | |
|     /* For SLOF */
 | |
|     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
 | |
|     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
 | |
| 
 | |
|     /*
 | |
|      * The "ibm,plat-res-int-priorities" property defines the priority
 | |
|      * ranges reserved by the hypervisor
 | |
|      */
 | |
|     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
 | |
|                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
 | |
| }
 | |
| 
 | |
| static int spapr_xive_activate(SpaprInterruptController *intc,
 | |
|                                uint32_t nr_servers, Error **errp)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
 | |
|                                     errp);
 | |
|         if (rc < 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Activate the XIVE MMIOs */
 | |
|     spapr_xive_mmio_set_enabled(xive, true);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_xive_deactivate(SpaprInterruptController *intc)
 | |
| {
 | |
|     SpaprXive *xive = SPAPR_XIVE(intc);
 | |
| 
 | |
|     spapr_xive_mmio_set_enabled(xive, false);
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         kvmppc_xive_disconnect(intc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spapr_xive_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
 | |
|     SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
 | |
|     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
 | |
|     SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
 | |
| 
 | |
|     dc->desc    = "sPAPR XIVE Interrupt Controller";
 | |
|     device_class_set_props(dc, spapr_xive_properties);
 | |
|     device_class_set_parent_realize(dc, spapr_xive_realize,
 | |
|                                     &sxc->parent_realize);
 | |
|     dc->vmsd    = &vmstate_spapr_xive;
 | |
| 
 | |
|     xrc->get_eas = spapr_xive_get_eas;
 | |
|     xrc->get_end = spapr_xive_get_end;
 | |
|     xrc->write_end = spapr_xive_write_end;
 | |
|     xrc->get_nvt = spapr_xive_get_nvt;
 | |
|     xrc->write_nvt = spapr_xive_write_nvt;
 | |
|     xrc->get_block_id = spapr_xive_get_block_id;
 | |
| 
 | |
|     sicc->activate = spapr_xive_activate;
 | |
|     sicc->deactivate = spapr_xive_deactivate;
 | |
|     sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
 | |
|     sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
 | |
|     sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
 | |
|     sicc->claim_irq = spapr_xive_claim_irq;
 | |
|     sicc->free_irq = spapr_xive_free_irq;
 | |
|     sicc->set_irq = spapr_xive_set_irq;
 | |
|     sicc->print_info = spapr_xive_print_info;
 | |
|     sicc->dt = spapr_xive_dt;
 | |
|     sicc->post_load = spapr_xive_post_load;
 | |
| 
 | |
|     xpc->match_nvt  = spapr_xive_match_nvt;
 | |
| }
 | |
| 
 | |
| static const TypeInfo spapr_xive_info = {
 | |
|     .name = TYPE_SPAPR_XIVE,
 | |
|     .parent = TYPE_XIVE_ROUTER,
 | |
|     .instance_init = spapr_xive_instance_init,
 | |
|     .instance_size = sizeof(SpaprXive),
 | |
|     .class_init = spapr_xive_class_init,
 | |
|     .class_size = sizeof(SpaprXiveClass),
 | |
|     .interfaces = (InterfaceInfo[]) {
 | |
|         { TYPE_SPAPR_INTC },
 | |
|         { }
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void spapr_xive_register_types(void)
 | |
| {
 | |
|     type_register_static(&spapr_xive_info);
 | |
| }
 | |
| 
 | |
| type_init(spapr_xive_register_types)
 | |
| 
 | |
| /*
 | |
|  * XIVE hcalls
 | |
|  *
 | |
|  * The terminology used by the XIVE hcalls is the following :
 | |
|  *
 | |
|  *   TARGET vCPU number
 | |
|  *   EQ     Event Queue assigned by OS to receive event data
 | |
|  *   ESB    page for source interrupt management
 | |
|  *   LISN   Logical Interrupt Source Number identifying a source in the
 | |
|  *          machine
 | |
|  *   EISN   Effective Interrupt Source Number used by guest OS to
 | |
|  *          identify source in the guest
 | |
|  *
 | |
|  * The EAS, END, NVT structures are not exposed.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Linux hosts under OPAL reserve priority 7 for their own escalation
 | |
|  * interrupts (DD2.X POWER9). So we only allow the guest to use
 | |
|  * priorities [0..6].
 | |
|  */
 | |
| static bool spapr_xive_priority_is_reserved(uint8_t priority)
 | |
| {
 | |
|     switch (priority) {
 | |
|     case 0 ... 6:
 | |
|         return false;
 | |
|     case 7: /* OPAL escalation queue */
 | |
|     default:
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
 | |
|  * real address of the MMIO page through which the Event State Buffer
 | |
|  * entry associated with the value of the "lisn" parameter is managed.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63 reserved
 | |
|  * - R5: "lisn" is per "interrupts", "interrupt-map", or
 | |
|  *       "ibm,xive-lisn-ranges" properties, or as returned by the
 | |
|  *       ibm,query-interrupt-source-number RTAS call, or as returned
 | |
|  *       by the H_ALLOCATE_VAS_WINDOW hcall
 | |
|  *
 | |
|  * Output
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-59: Reserved
 | |
|  *         Bit 60: H_INT_ESB must be used for Event State Buffer
 | |
|  *                 management
 | |
|  *         Bit 61: 1 == LSI  0 == MSI
 | |
|  *         Bit 62: the full function page supports trigger
 | |
|  *         Bit 63: Store EOI Supported
 | |
|  * - R5: Logical Real address of full function Event State Buffer
 | |
|  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
 | |
|  * - R6: Logical Real Address of trigger only Event State Buffer
 | |
|  *       management page or -1.
 | |
|  * - R7: Power of 2 page size for the ESB management pages returned in
 | |
|  *       R5 and R6.
 | |
|  */
 | |
| 
 | |
| #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
 | |
| #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
 | |
| #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
 | |
|                                                     on same page */
 | |
| #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
 | |
| 
 | |
| static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
 | |
|                                           SpaprMachineState *spapr,
 | |
|                                           target_ulong opcode,
 | |
|                                           target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     XiveSource *xsrc = &xive->source;
 | |
|     target_ulong flags  = args[0];
 | |
|     target_ulong lisn   = args[1];
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (lisn >= xive->nr_irqs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     if (!xive_eas_is_valid(&xive->eat[lisn])) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * All sources are emulated under the main XIVE object and share
 | |
|      * the same characteristics.
 | |
|      */
 | |
|     args[0] = 0;
 | |
|     if (!xive_source_esb_has_2page(xsrc)) {
 | |
|         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
 | |
|     }
 | |
|     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
 | |
|         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Force the use of the H_INT_ESB hcall in case of an LSI
 | |
|      * interrupt. This is necessary under KVM to re-trigger the
 | |
|      * interrupt if the level is still asserted
 | |
|      */
 | |
|     if (xive_source_irq_is_lsi(xsrc, lisn)) {
 | |
|         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
 | |
|     }
 | |
| 
 | |
|     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
 | |
|         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
 | |
|     } else {
 | |
|         args[1] = -1;
 | |
|     }
 | |
| 
 | |
|     if (xive_source_esb_has_2page(xsrc) &&
 | |
|         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
 | |
|         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
 | |
|     } else {
 | |
|         args[2] = -1;
 | |
|     }
 | |
| 
 | |
|     if (xive_source_esb_has_2page(xsrc)) {
 | |
|         args[3] = xsrc->esb_shift - 1;
 | |
|     } else {
 | |
|         args[3] = xsrc->esb_shift;
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
 | |
|  * Interrupt Source to a target. The Logical Interrupt Source is
 | |
|  * designated with the "lisn" parameter and the target is designated
 | |
|  * with the "target" and "priority" parameters.  Upon return from the
 | |
|  * hcall(), no additional interrupts will be directed to the old EQ.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-61: Reserved
 | |
|  *         Bit 62: set the "eisn" in the EAS
 | |
|  *         Bit 63: masks the interrupt source in the hardware interrupt
 | |
|  *       control structure. An interrupt masked by this mechanism will
 | |
|  *       be dropped, but it's source state bits will still be
 | |
|  *       set. There is no race-free way of unmasking and restoring the
 | |
|  *       source. Thus this should only be used in interrupts that are
 | |
|  *       also masked at the source, and only in cases where the
 | |
|  *       interrupt is not meant to be used for a large amount of time
 | |
|  *       because no valid target exists for it for example
 | |
|  * - R5: "lisn" is per "interrupts", "interrupt-map", or
 | |
|  *       "ibm,xive-lisn-ranges" properties, or as returned by the
 | |
|  *       ibm,query-interrupt-source-number RTAS call, or as returned by
 | |
|  *       the H_ALLOCATE_VAS_WINDOW hcall
 | |
|  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
 | |
|  *       "ibm,ppc-interrupt-gserver#s"
 | |
|  * - R7: "priority" is a valid priority not in
 | |
|  *       "ibm,plat-res-int-priorities"
 | |
|  * - R8: "eisn" is the guest EISN associated with the "lisn"
 | |
|  *
 | |
|  * Output:
 | |
|  * - None
 | |
|  */
 | |
| 
 | |
| #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
 | |
| #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
 | |
| 
 | |
| static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
 | |
|                                             SpaprMachineState *spapr,
 | |
|                                             target_ulong opcode,
 | |
|                                             target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     XiveEAS eas, new_eas;
 | |
|     target_ulong flags    = args[0];
 | |
|     target_ulong lisn     = args[1];
 | |
|     target_ulong target   = args[2];
 | |
|     target_ulong priority = args[3];
 | |
|     target_ulong eisn     = args[4];
 | |
|     uint8_t end_blk;
 | |
|     uint32_t end_idx;
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (lisn >= xive->nr_irqs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     eas = xive->eat[lisn];
 | |
|     if (!xive_eas_is_valid(&eas)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /* priority 0xff is used to reset the EAS */
 | |
|     if (priority == 0xff) {
 | |
|         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (flags & SPAPR_XIVE_SRC_MASK) {
 | |
|         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
 | |
|     } else {
 | |
|         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
 | |
|     }
 | |
| 
 | |
|     if (spapr_xive_priority_is_reserved(priority)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
 | |
|                       " is reserved\n", priority);
 | |
|         return H_P4;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Validate that "target" is part of the list of threads allocated
 | |
|      * to the partition. For that, find the END corresponding to the
 | |
|      * target.
 | |
|      */
 | |
|     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
 | |
|         return H_P3;
 | |
|     }
 | |
| 
 | |
|     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
 | |
|     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
 | |
| 
 | |
|     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
 | |
|         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
 | |
|     }
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         Error *local_err = NULL;
 | |
| 
 | |
|         kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     xive->eat[lisn] = new_eas;
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
 | |
|  * target/priority pair is assigned to the specified Logical Interrupt
 | |
|  * Source.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63 Reserved
 | |
|  * - R5: "lisn" is per "interrupts", "interrupt-map", or
 | |
|  *       "ibm,xive-lisn-ranges" properties, or as returned by the
 | |
|  *       ibm,query-interrupt-source-number RTAS call, or as
 | |
|  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
 | |
|  *
 | |
|  * Output:
 | |
|  * - R4: Target to which the specified Logical Interrupt Source is
 | |
|  *       assigned
 | |
|  * - R5: Priority to which the specified Logical Interrupt Source is
 | |
|  *       assigned
 | |
|  * - R6: EISN for the specified Logical Interrupt Source (this will be
 | |
|  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
 | |
|  */
 | |
| static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
 | |
|                                             SpaprMachineState *spapr,
 | |
|                                             target_ulong opcode,
 | |
|                                             target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong lisn = args[1];
 | |
|     XiveEAS eas;
 | |
|     XiveEND *end;
 | |
|     uint8_t nvt_blk;
 | |
|     uint32_t end_idx, nvt_idx;
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (lisn >= xive->nr_irqs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     eas = xive->eat[lisn];
 | |
|     if (!xive_eas_is_valid(&eas)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /* EAS_END_BLOCK is unused on sPAPR */
 | |
|     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
 | |
| 
 | |
|     assert(end_idx < xive->nr_ends);
 | |
|     end = &xive->endt[end_idx];
 | |
| 
 | |
|     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
 | |
|     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
 | |
|     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
 | |
| 
 | |
|     if (xive_eas_is_masked(&eas)) {
 | |
|         args[1] = 0xff;
 | |
|     } else {
 | |
|         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
 | |
|     }
 | |
| 
 | |
|     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
 | |
|  * address of the notification management page associated with the
 | |
|  * specified target and priority.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63 Reserved
 | |
|  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
 | |
|  *       "ibm,ppc-interrupt-gserver#s"
 | |
|  * - R6: "priority" is a valid priority not in
 | |
|  *       "ibm,plat-res-int-priorities"
 | |
|  *
 | |
|  * Output:
 | |
|  * - R4: Logical real address of notification page
 | |
|  * - R5: Power of 2 page size of the notification page
 | |
|  */
 | |
| static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
 | |
|                                          SpaprMachineState *spapr,
 | |
|                                          target_ulong opcode,
 | |
|                                          target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     XiveENDSource *end_xsrc = &xive->end_source;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong target = args[1];
 | |
|     target_ulong priority = args[2];
 | |
|     XiveEND *end;
 | |
|     uint8_t end_blk;
 | |
|     uint32_t end_idx;
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * H_STATE should be returned if a H_INT_RESET is in progress.
 | |
|      * This is not needed when running the emulation under QEMU
 | |
|      */
 | |
| 
 | |
|     if (spapr_xive_priority_is_reserved(priority)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
 | |
|                       " is reserved\n", priority);
 | |
|         return H_P3;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Validate that "target" is part of the list of threads allocated
 | |
|      * to the partition. For that, find the END corresponding to the
 | |
|      * target.
 | |
|      */
 | |
|     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     assert(end_idx < xive->nr_ends);
 | |
|     end = &xive->endt[end_idx];
 | |
| 
 | |
|     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
 | |
|     if (xive_end_is_enqueue(end)) {
 | |
|         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
 | |
|     } else {
 | |
|         args[1] = 0;
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
 | |
|  * a given "target" and "priority".  It is also used to set the
 | |
|  * notification config associated with the EQ.  An EQ size of 0 is
 | |
|  * used to reset the EQ config for a given target and priority. If
 | |
|  * resetting the EQ config, the END associated with the given "target"
 | |
|  * and "priority" will be changed to disable queueing.
 | |
|  *
 | |
|  * Upon return from the hcall(), no additional interrupts will be
 | |
|  * directed to the old EQ (if one was set). The old EQ (if one was
 | |
|  * set) should be investigated for interrupts that occurred prior to
 | |
|  * or during the hcall().
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-62: Reserved
 | |
|  *         Bit 63: Unconditional Notify (n) per the XIVE spec
 | |
|  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
 | |
|  *       "ibm,ppc-interrupt-gserver#s"
 | |
|  * - R6: "priority" is a valid priority not in
 | |
|  *       "ibm,plat-res-int-priorities"
 | |
|  * - R7: "eventQueue": The logical real address of the start of the EQ
 | |
|  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
 | |
|  *
 | |
|  * Output:
 | |
|  * - None
 | |
|  */
 | |
| 
 | |
| #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
 | |
| 
 | |
| static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
 | |
|                                            SpaprMachineState *spapr,
 | |
|                                            target_ulong opcode,
 | |
|                                            target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong target = args[1];
 | |
|     target_ulong priority = args[2];
 | |
|     target_ulong qpage = args[3];
 | |
|     target_ulong qsize = args[4];
 | |
|     XiveEND end;
 | |
|     uint8_t end_blk, nvt_blk;
 | |
|     uint32_t end_idx, nvt_idx;
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * H_STATE should be returned if a H_INT_RESET is in progress.
 | |
|      * This is not needed when running the emulation under QEMU
 | |
|      */
 | |
| 
 | |
|     if (spapr_xive_priority_is_reserved(priority)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
 | |
|                       " is reserved\n", priority);
 | |
|         return H_P3;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Validate that "target" is part of the list of threads allocated
 | |
|      * to the partition. For that, find the END corresponding to the
 | |
|      * target.
 | |
|      */
 | |
| 
 | |
|     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     assert(end_idx < xive->nr_ends);
 | |
|     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
 | |
| 
 | |
|     switch (qsize) {
 | |
|     case 12:
 | |
|     case 16:
 | |
|     case 21:
 | |
|     case 24:
 | |
|         if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
 | |
|                           " is not naturally aligned with %" HWADDR_PRIx "\n",
 | |
|                           qpage, (hwaddr)1 << qsize);
 | |
|             return H_P4;
 | |
|         }
 | |
|         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
 | |
|         end.w3 = cpu_to_be32(qpage & 0xffffffff);
 | |
|         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
 | |
|         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
 | |
|         break;
 | |
|     case 0:
 | |
|         /* reset queue and disable queueing */
 | |
|         spapr_xive_end_reset(&end);
 | |
|         goto out;
 | |
| 
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
 | |
|                       qsize);
 | |
|         return H_P5;
 | |
|     }
 | |
| 
 | |
|     if (qsize) {
 | |
|         hwaddr plen = 1 << qsize;
 | |
|         void *eq;
 | |
| 
 | |
|         /*
 | |
|          * Validate the guest EQ. We should also check that the queue
 | |
|          * has been zeroed by the OS.
 | |
|          */
 | |
|         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
 | |
|                                MEMTXATTRS_UNSPECIFIED);
 | |
|         if (plen != 1 << qsize) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
 | |
|                           HWADDR_PRIx "\n", qpage);
 | |
|             return H_P4;
 | |
|         }
 | |
|         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
 | |
|     }
 | |
| 
 | |
|     /* "target" should have been validated above */
 | |
|     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Ensure the priority and target are correctly set (they will not
 | |
|      * be right after allocation)
 | |
|      */
 | |
|     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
 | |
|         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
 | |
|     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
 | |
| 
 | |
|     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
 | |
|         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
 | |
|     } else {
 | |
|         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The generation bit for the END starts at 1 and The END page
 | |
|      * offset counter starts at 0.
 | |
|      */
 | |
|     end.w1 = cpu_to_be32(END_W1_GENERATION) |
 | |
|         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
 | |
|     end.w0 |= cpu_to_be32(END_W0_VALID);
 | |
| 
 | |
|     /*
 | |
|      * TODO: issue syncs required to ensure all in-flight interrupts
 | |
|      * are complete on the old END
 | |
|      */
 | |
| 
 | |
| out:
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         Error *local_err = NULL;
 | |
| 
 | |
|         kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Update END */
 | |
|     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
 | |
|  * target and priority.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-62: Reserved
 | |
|  *         Bit 63: Debug: Return debug data
 | |
|  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
 | |
|  *       "ibm,ppc-interrupt-gserver#s"
 | |
|  * - R6: "priority" is a valid priority not in
 | |
|  *       "ibm,plat-res-int-priorities"
 | |
|  *
 | |
|  * Output:
 | |
|  * - R4: "flags":
 | |
|  *       Bits 0-61: Reserved
 | |
|  *       Bit 62: The value of Event Queue Generation Number (g) per
 | |
|  *              the XIVE spec if "Debug" = 1
 | |
|  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
 | |
|  * - R5: The logical real address of the start of the EQ
 | |
|  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
 | |
|  * - R7: The value of Event Queue Offset Counter per XIVE spec
 | |
|  *       if "Debug" = 1, else 0
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
 | |
| 
 | |
| static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
 | |
|                                            SpaprMachineState *spapr,
 | |
|                                            target_ulong opcode,
 | |
|                                            target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong target = args[1];
 | |
|     target_ulong priority = args[2];
 | |
|     XiveEND *end;
 | |
|     uint8_t end_blk;
 | |
|     uint32_t end_idx;
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags & ~SPAPR_XIVE_END_DEBUG) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * H_STATE should be returned if a H_INT_RESET is in progress.
 | |
|      * This is not needed when running the emulation under QEMU
 | |
|      */
 | |
| 
 | |
|     if (spapr_xive_priority_is_reserved(priority)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
 | |
|                       " is reserved\n", priority);
 | |
|         return H_P3;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Validate that "target" is part of the list of threads allocated
 | |
|      * to the partition. For that, find the END corresponding to the
 | |
|      * target.
 | |
|      */
 | |
|     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     assert(end_idx < xive->nr_ends);
 | |
|     end = &xive->endt[end_idx];
 | |
| 
 | |
|     args[0] = 0;
 | |
|     if (xive_end_is_notify(end)) {
 | |
|         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
 | |
|     }
 | |
| 
 | |
|     if (xive_end_is_enqueue(end)) {
 | |
|         args[1] = xive_end_qaddr(end);
 | |
|         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
 | |
|     } else {
 | |
|         args[1] = 0;
 | |
|         args[2] = 0;
 | |
|     }
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         Error *local_err = NULL;
 | |
| 
 | |
|         kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* TODO: do we need any locking on the END ? */
 | |
|     if (flags & SPAPR_XIVE_END_DEBUG) {
 | |
|         /* Load the event queue generation number into the return flags */
 | |
|         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
 | |
| 
 | |
|         /* Load R7 with the event queue offset counter */
 | |
|         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
 | |
|     } else {
 | |
|         args[3] = 0;
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
 | |
|  * reporting cache line pair for the calling thread.  The reporting
 | |
|  * cache lines will contain the OS interrupt context when the OS
 | |
|  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
 | |
|  * interrupt. The reporting cache lines can be reset by inputting -1
 | |
|  * in "reportingLine".  Issuing the CI store byte without reporting
 | |
|  * cache lines registered will result in the data not being accessible
 | |
|  * to the OS.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63: Reserved
 | |
|  * - R5: "reportingLine": The logical real address of the reporting cache
 | |
|  *       line pair
 | |
|  *
 | |
|  * Output:
 | |
|  * - None
 | |
|  */
 | |
| static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
 | |
|                                                 SpaprMachineState *spapr,
 | |
|                                                 target_ulong opcode,
 | |
|                                                 target_ulong *args)
 | |
| {
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * H_STATE should be returned if a H_INT_RESET is in progress.
 | |
|      * This is not needed when running the emulation under QEMU
 | |
|      */
 | |
| 
 | |
|     /* TODO: H_INT_SET_OS_REPORTING_LINE */
 | |
|     return H_FUNCTION;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
 | |
|  * real address of the reporting cache line pair set for the input
 | |
|  * "target".  If no reporting cache line pair has been set, -1 is
 | |
|  * returned.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63: Reserved
 | |
|  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
 | |
|  *       "ibm,ppc-interrupt-gserver#s"
 | |
|  * - R6: "reportingLine": The logical real address of the reporting
 | |
|  *        cache line pair
 | |
|  *
 | |
|  * Output:
 | |
|  * - R4: The logical real address of the reporting line if set, else -1
 | |
|  */
 | |
| static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
 | |
|                                                 SpaprMachineState *spapr,
 | |
|                                                 target_ulong opcode,
 | |
|                                                 target_ulong *args)
 | |
| {
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * H_STATE should be returned if a H_INT_RESET is in progress.
 | |
|      * This is not needed when running the emulation under QEMU
 | |
|      */
 | |
| 
 | |
|     /* TODO: H_INT_GET_OS_REPORTING_LINE */
 | |
|     return H_FUNCTION;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
 | |
|  * page for the input "lisn".  This hcall is only supported for LISNs
 | |
|  * that have the ESB hcall flag set to 1 when returned from hcall()
 | |
|  * H_INT_GET_SOURCE_INFO.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-62: Reserved
 | |
|  *         bit 63: Store: Store=1, store operation, else load operation
 | |
|  * - R5: "lisn" is per "interrupts", "interrupt-map", or
 | |
|  *       "ibm,xive-lisn-ranges" properties, or as returned by the
 | |
|  *       ibm,query-interrupt-source-number RTAS call, or as
 | |
|  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
 | |
|  * - R6: "esbOffset" is the offset into the ESB page for the load or
 | |
|  *       store operation
 | |
|  * - R7: "storeData" is the data to write for a store operation
 | |
|  *
 | |
|  * Output:
 | |
|  * - R4: The value of the load if load operation, else -1
 | |
|  */
 | |
| 
 | |
| #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
 | |
| 
 | |
| static target_ulong h_int_esb(PowerPCCPU *cpu,
 | |
|                               SpaprMachineState *spapr,
 | |
|                               target_ulong opcode,
 | |
|                               target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     XiveEAS eas;
 | |
|     target_ulong flags  = args[0];
 | |
|     target_ulong lisn   = args[1];
 | |
|     target_ulong offset = args[2];
 | |
|     target_ulong data   = args[3];
 | |
|     hwaddr mmio_addr;
 | |
|     XiveSource *xsrc = &xive->source;
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags & ~SPAPR_XIVE_ESB_STORE) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (lisn >= xive->nr_irqs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     eas = xive->eat[lisn];
 | |
|     if (!xive_eas_is_valid(&eas)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     if (offset > (1ull << xsrc->esb_shift)) {
 | |
|         return H_P3;
 | |
|     }
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
 | |
|                                      flags & SPAPR_XIVE_ESB_STORE);
 | |
|     } else {
 | |
|         mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
 | |
| 
 | |
|         if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
 | |
|                           (flags & SPAPR_XIVE_ESB_STORE))) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
 | |
|                           HWADDR_PRIx "\n", mmio_addr);
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
|         args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
 | |
|     }
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
 | |
|  * ensure any in flight events for the input lisn are in the event
 | |
|  * queue.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63: Reserved
 | |
|  * - R5: "lisn" is per "interrupts", "interrupt-map", or
 | |
|  *       "ibm,xive-lisn-ranges" properties, or as returned by the
 | |
|  *       ibm,query-interrupt-source-number RTAS call, or as
 | |
|  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
 | |
|  *
 | |
|  * Output:
 | |
|  * - None
 | |
|  */
 | |
| static target_ulong h_int_sync(PowerPCCPU *cpu,
 | |
|                                SpaprMachineState *spapr,
 | |
|                                target_ulong opcode,
 | |
|                                target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     XiveEAS eas;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong lisn = args[1];
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (lisn >= xive->nr_irqs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     eas = xive->eat[lisn];
 | |
|     if (!xive_eas_is_valid(&eas)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 | |
|                       lisn);
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * H_STATE should be returned if a H_INT_RESET is in progress.
 | |
|      * This is not needed when running the emulation under QEMU
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * This is not real hardware. Nothing to be done unless when
 | |
|      * under KVM
 | |
|      */
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         Error *local_err = NULL;
 | |
| 
 | |
|         kvmppc_xive_sync_source(xive, lisn, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
|     }
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The H_INT_RESET hcall() is used to reset all of the partition's
 | |
|  * interrupt exploitation structures to their initial state.  This
 | |
|  * means losing all previously set interrupt state set via
 | |
|  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
 | |
|  *
 | |
|  * Parameters:
 | |
|  * Input:
 | |
|  * - R4: "flags"
 | |
|  *         Bits 0-63: Reserved
 | |
|  *
 | |
|  * Output:
 | |
|  * - None
 | |
|  */
 | |
| static target_ulong h_int_reset(PowerPCCPU *cpu,
 | |
|                                 SpaprMachineState *spapr,
 | |
|                                 target_ulong opcode,
 | |
|                                 target_ulong *args)
 | |
| {
 | |
|     SpaprXive *xive = spapr->xive;
 | |
|     target_ulong flags   = args[0];
 | |
| 
 | |
|     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     if (flags) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     device_legacy_reset(DEVICE(xive));
 | |
| 
 | |
|     if (kvm_irqchip_in_kernel()) {
 | |
|         Error *local_err = NULL;
 | |
| 
 | |
|         kvmppc_xive_reset(xive, &local_err);
 | |
|         if (local_err) {
 | |
|             error_report_err(local_err);
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
|     }
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| void spapr_xive_hcall_init(SpaprMachineState *spapr)
 | |
| {
 | |
|     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
 | |
|     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
 | |
|     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
 | |
|     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
 | |
|     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
 | |
|     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
 | |
|     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
 | |
|                              h_int_set_os_reporting_line);
 | |
|     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
 | |
|                              h_int_get_os_reporting_line);
 | |
|     spapr_register_hypercall(H_INT_ESB, h_int_esb);
 | |
|     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
 | |
|     spapr_register_hypercall(H_INT_RESET, h_int_reset);
 | |
| }
 |