 c308efe63a
			
		
	
	
		c308efe63a
		
	
	
	
	
		
			
			Remove an out of date comment: this comment used to be attached to cpu_register_physical_memory_log(), before commit 0f0cb164 accidentally inserted a couple of other functions between the comment and its function. It is in any case obsolete since (a) the function arguments it refers to have been replaced with a single MemoryRegionSection* argument and (b) the inability to handle regions whose offset_within_address_space and offset_within_region aren't equally aligned was fixed as part of the rewrite of this code. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
		
			
				
	
	
		
			4227 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4227 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  virtual page mapping and translated block handling
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "config.h"
 | |
| #ifdef _WIN32
 | |
| #include <windows.h>
 | |
| #else
 | |
| #include <sys/types.h>
 | |
| #include <sys/mman.h>
 | |
| #endif
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "cpu.h"
 | |
| #include "tcg.h"
 | |
| #include "hw/hw.h"
 | |
| #include "hw/qdev.h"
 | |
| #include "osdep.h"
 | |
| #include "kvm.h"
 | |
| #include "hw/xen.h"
 | |
| #include "qemu-timer.h"
 | |
| #include "memory.h"
 | |
| #include "exec-memory.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include <qemu.h>
 | |
| #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
 | |
| #include <sys/param.h>
 | |
| #if __FreeBSD_version >= 700104
 | |
| #define HAVE_KINFO_GETVMMAP
 | |
| #define sigqueue sigqueue_freebsd  /* avoid redefinition */
 | |
| #include <sys/time.h>
 | |
| #include <sys/proc.h>
 | |
| #include <machine/profile.h>
 | |
| #define _KERNEL
 | |
| #include <sys/user.h>
 | |
| #undef _KERNEL
 | |
| #undef sigqueue
 | |
| #include <libutil.h>
 | |
| #endif
 | |
| #endif
 | |
| #else /* !CONFIG_USER_ONLY */
 | |
| #include "xen-mapcache.h"
 | |
| #include "trace.h"
 | |
| #endif
 | |
| 
 | |
| #include "cputlb.h"
 | |
| 
 | |
| #define WANT_EXEC_OBSOLETE
 | |
| #include "exec-obsolete.h"
 | |
| 
 | |
| //#define DEBUG_TB_INVALIDATE
 | |
| //#define DEBUG_FLUSH
 | |
| //#define DEBUG_UNASSIGNED
 | |
| 
 | |
| /* make various TB consistency checks */
 | |
| //#define DEBUG_TB_CHECK
 | |
| 
 | |
| //#define DEBUG_IOPORT
 | |
| //#define DEBUG_SUBPAGE
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* TB consistency checks only implemented for usermode emulation.  */
 | |
| #undef DEBUG_TB_CHECK
 | |
| #endif
 | |
| 
 | |
| #define SMC_BITMAP_USE_THRESHOLD 10
 | |
| 
 | |
| static TranslationBlock *tbs;
 | |
| static int code_gen_max_blocks;
 | |
| TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
 | |
| static int nb_tbs;
 | |
| /* any access to the tbs or the page table must use this lock */
 | |
| spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
| #if defined(__arm__) || defined(__sparc_v9__)
 | |
| /* The prologue must be reachable with a direct jump. ARM and Sparc64
 | |
|  have limited branch ranges (possibly also PPC) so place it in a
 | |
|  section close to code segment. */
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((__section__(".gen_code")))           \
 | |
|     __attribute__((aligned (32)))
 | |
| #elif defined(_WIN32) && !defined(_WIN64)
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((aligned (16)))
 | |
| #else
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((aligned (32)))
 | |
| #endif
 | |
| 
 | |
| uint8_t code_gen_prologue[1024] code_gen_section;
 | |
| static uint8_t *code_gen_buffer;
 | |
| static unsigned long code_gen_buffer_size;
 | |
| /* threshold to flush the translated code buffer */
 | |
| static unsigned long code_gen_buffer_max_size;
 | |
| static uint8_t *code_gen_ptr;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| int phys_ram_fd;
 | |
| static int in_migration;
 | |
| 
 | |
| RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
 | |
| 
 | |
| static MemoryRegion *system_memory;
 | |
| static MemoryRegion *system_io;
 | |
| 
 | |
| MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
 | |
| static MemoryRegion io_mem_subpage_ram;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| CPUArchState *first_cpu;
 | |
| /* current CPU in the current thread. It is only valid inside
 | |
|    cpu_exec() */
 | |
| DEFINE_TLS(CPUArchState *,cpu_single_env);
 | |
| /* 0 = Do not count executed instructions.
 | |
|    1 = Precise instruction counting.
 | |
|    2 = Adaptive rate instruction counting.  */
 | |
| int use_icount = 0;
 | |
| 
 | |
| typedef struct PageDesc {
 | |
|     /* list of TBs intersecting this ram page */
 | |
|     TranslationBlock *first_tb;
 | |
|     /* in order to optimize self modifying code, we count the number
 | |
|        of lookups we do to a given page to use a bitmap */
 | |
|     unsigned int code_write_count;
 | |
|     uint8_t *code_bitmap;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     unsigned long flags;
 | |
| #endif
 | |
| } PageDesc;
 | |
| 
 | |
| /* In system mode we want L1_MAP to be based on ram offsets,
 | |
|    while in user mode we want it to be based on virtual addresses.  */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
 | |
| # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
 | |
| #else
 | |
| # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
 | |
| #endif
 | |
| #else
 | |
| # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
 | |
| #endif
 | |
| 
 | |
| /* Size of the L2 (and L3, etc) page tables.  */
 | |
| #define L2_BITS 10
 | |
| #define L2_SIZE (1 << L2_BITS)
 | |
| 
 | |
| #define P_L2_LEVELS \
 | |
|     (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
 | |
| 
 | |
| /* The bits remaining after N lower levels of page tables.  */
 | |
| #define V_L1_BITS_REM \
 | |
|     ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
 | |
| 
 | |
| #if V_L1_BITS_REM < 4
 | |
| #define V_L1_BITS  (V_L1_BITS_REM + L2_BITS)
 | |
| #else
 | |
| #define V_L1_BITS  V_L1_BITS_REM
 | |
| #endif
 | |
| 
 | |
| #define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)
 | |
| 
 | |
| #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
 | |
| 
 | |
| uintptr_t qemu_real_host_page_size;
 | |
| uintptr_t qemu_host_page_size;
 | |
| uintptr_t qemu_host_page_mask;
 | |
| 
 | |
| /* This is a multi-level map on the virtual address space.
 | |
|    The bottom level has pointers to PageDesc.  */
 | |
| static void *l1_map[V_L1_SIZE];
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| typedef struct PhysPageEntry PhysPageEntry;
 | |
| 
 | |
| static MemoryRegionSection *phys_sections;
 | |
| static unsigned phys_sections_nb, phys_sections_nb_alloc;
 | |
| static uint16_t phys_section_unassigned;
 | |
| static uint16_t phys_section_notdirty;
 | |
| static uint16_t phys_section_rom;
 | |
| static uint16_t phys_section_watch;
 | |
| 
 | |
| struct PhysPageEntry {
 | |
|     uint16_t is_leaf : 1;
 | |
|      /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
 | |
|     uint16_t ptr : 15;
 | |
| };
 | |
| 
 | |
| /* Simple allocator for PhysPageEntry nodes */
 | |
| static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
 | |
| static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
 | |
| 
 | |
| #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
 | |
| 
 | |
| /* This is a multi-level map on the physical address space.
 | |
|    The bottom level has pointers to MemoryRegionSections.  */
 | |
| static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
 | |
| 
 | |
| static void io_mem_init(void);
 | |
| static void memory_map_init(void);
 | |
| 
 | |
| static MemoryRegion io_mem_watch;
 | |
| #endif
 | |
| 
 | |
| /* statistics */
 | |
| static int tb_flush_count;
 | |
| static int tb_phys_invalidate_count;
 | |
| 
 | |
| #ifdef _WIN32
 | |
| static void map_exec(void *addr, long size)
 | |
| {
 | |
|     DWORD old_protect;
 | |
|     VirtualProtect(addr, size,
 | |
|                    PAGE_EXECUTE_READWRITE, &old_protect);
 | |
|     
 | |
| }
 | |
| #else
 | |
| static void map_exec(void *addr, long size)
 | |
| {
 | |
|     unsigned long start, end, page_size;
 | |
|     
 | |
|     page_size = getpagesize();
 | |
|     start = (unsigned long)addr;
 | |
|     start &= ~(page_size - 1);
 | |
|     
 | |
|     end = (unsigned long)addr + size;
 | |
|     end += page_size - 1;
 | |
|     end &= ~(page_size - 1);
 | |
|     
 | |
|     mprotect((void *)start, end - start,
 | |
|              PROT_READ | PROT_WRITE | PROT_EXEC);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void page_init(void)
 | |
| {
 | |
|     /* NOTE: we can always suppose that qemu_host_page_size >=
 | |
|        TARGET_PAGE_SIZE */
 | |
| #ifdef _WIN32
 | |
|     {
 | |
|         SYSTEM_INFO system_info;
 | |
| 
 | |
|         GetSystemInfo(&system_info);
 | |
|         qemu_real_host_page_size = system_info.dwPageSize;
 | |
|     }
 | |
| #else
 | |
|     qemu_real_host_page_size = getpagesize();
 | |
| #endif
 | |
|     if (qemu_host_page_size == 0)
 | |
|         qemu_host_page_size = qemu_real_host_page_size;
 | |
|     if (qemu_host_page_size < TARGET_PAGE_SIZE)
 | |
|         qemu_host_page_size = TARGET_PAGE_SIZE;
 | |
|     qemu_host_page_mask = ~(qemu_host_page_size - 1);
 | |
| 
 | |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
| #ifdef HAVE_KINFO_GETVMMAP
 | |
|         struct kinfo_vmentry *freep;
 | |
|         int i, cnt;
 | |
| 
 | |
|         freep = kinfo_getvmmap(getpid(), &cnt);
 | |
|         if (freep) {
 | |
|             mmap_lock();
 | |
|             for (i = 0; i < cnt; i++) {
 | |
|                 unsigned long startaddr, endaddr;
 | |
| 
 | |
|                 startaddr = freep[i].kve_start;
 | |
|                 endaddr = freep[i].kve_end;
 | |
|                 if (h2g_valid(startaddr)) {
 | |
|                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|                     if (h2g_valid(endaddr)) {
 | |
|                         endaddr = h2g(endaddr);
 | |
|                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
|                     } else {
 | |
| #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
 | |
|                         endaddr = ~0ul;
 | |
|                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
| #endif
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             free(freep);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| #else
 | |
|         FILE *f;
 | |
| 
 | |
|         last_brk = (unsigned long)sbrk(0);
 | |
| 
 | |
|         f = fopen("/compat/linux/proc/self/maps", "r");
 | |
|         if (f) {
 | |
|             mmap_lock();
 | |
| 
 | |
|             do {
 | |
|                 unsigned long startaddr, endaddr;
 | |
|                 int n;
 | |
| 
 | |
|                 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
 | |
| 
 | |
|                 if (n == 2 && h2g_valid(startaddr)) {
 | |
|                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|                     if (h2g_valid(endaddr)) {
 | |
|                         endaddr = h2g(endaddr);
 | |
|                     } else {
 | |
|                         endaddr = ~0ul;
 | |
|                     }
 | |
|                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
|                 }
 | |
|             } while (!feof(f));
 | |
| 
 | |
|             fclose(f);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
 | |
| {
 | |
|     PageDesc *pd;
 | |
|     void **lp;
 | |
|     int i;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     /* We can't use g_malloc because it may recurse into a locked mutex. */
 | |
| # define ALLOC(P, SIZE)                                 \
 | |
|     do {                                                \
 | |
|         P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \
 | |
|                  MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \
 | |
|     } while (0)
 | |
| #else
 | |
| # define ALLOC(P, SIZE) \
 | |
|     do { P = g_malloc0(SIZE); } while (0)
 | |
| #endif
 | |
| 
 | |
|     /* Level 1.  Always allocated.  */
 | |
|     lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
 | |
| 
 | |
|     /* Level 2..N-1.  */
 | |
|     for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
 | |
|         void **p = *lp;
 | |
| 
 | |
|         if (p == NULL) {
 | |
|             if (!alloc) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             ALLOC(p, sizeof(void *) * L2_SIZE);
 | |
|             *lp = p;
 | |
|         }
 | |
| 
 | |
|         lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
 | |
|     }
 | |
| 
 | |
|     pd = *lp;
 | |
|     if (pd == NULL) {
 | |
|         if (!alloc) {
 | |
|             return NULL;
 | |
|         }
 | |
|         ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
 | |
|         *lp = pd;
 | |
|     }
 | |
| 
 | |
| #undef ALLOC
 | |
| 
 | |
|     return pd + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find(tb_page_addr_t index)
 | |
| {
 | |
|     return page_find_alloc(index, 0);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static void phys_map_node_reserve(unsigned nodes)
 | |
| {
 | |
|     if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
 | |
|         typedef PhysPageEntry Node[L2_SIZE];
 | |
|         phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
 | |
|         phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
 | |
|                                       phys_map_nodes_nb + nodes);
 | |
|         phys_map_nodes = g_renew(Node, phys_map_nodes,
 | |
|                                  phys_map_nodes_nb_alloc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t phys_map_node_alloc(void)
 | |
| {
 | |
|     unsigned i;
 | |
|     uint16_t ret;
 | |
| 
 | |
|     ret = phys_map_nodes_nb++;
 | |
|     assert(ret != PHYS_MAP_NODE_NIL);
 | |
|     assert(ret != phys_map_nodes_nb_alloc);
 | |
|     for (i = 0; i < L2_SIZE; ++i) {
 | |
|         phys_map_nodes[ret][i].is_leaf = 0;
 | |
|         phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void phys_map_nodes_reset(void)
 | |
| {
 | |
|     phys_map_nodes_nb = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
 | |
|                                 target_phys_addr_t *nb, uint16_t leaf,
 | |
|                                 int level)
 | |
| {
 | |
|     PhysPageEntry *p;
 | |
|     int i;
 | |
|     target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
 | |
| 
 | |
|     if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         lp->ptr = phys_map_node_alloc();
 | |
|         p = phys_map_nodes[lp->ptr];
 | |
|         if (level == 0) {
 | |
|             for (i = 0; i < L2_SIZE; i++) {
 | |
|                 p[i].is_leaf = 1;
 | |
|                 p[i].ptr = phys_section_unassigned;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         p = phys_map_nodes[lp->ptr];
 | |
|     }
 | |
|     lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
 | |
| 
 | |
|     while (*nb && lp < &p[L2_SIZE]) {
 | |
|         if ((*index & (step - 1)) == 0 && *nb >= step) {
 | |
|             lp->is_leaf = true;
 | |
|             lp->ptr = leaf;
 | |
|             *index += step;
 | |
|             *nb -= step;
 | |
|         } else {
 | |
|             phys_page_set_level(lp, index, nb, leaf, level - 1);
 | |
|         }
 | |
|         ++lp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
 | |
|                           uint16_t leaf)
 | |
| {
 | |
|     /* Wildly overreserve - it doesn't matter much. */
 | |
|     phys_map_node_reserve(3 * P_L2_LEVELS);
 | |
| 
 | |
|     phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 | |
| }
 | |
| 
 | |
| MemoryRegionSection *phys_page_find(target_phys_addr_t index)
 | |
| {
 | |
|     PhysPageEntry lp = phys_map;
 | |
|     PhysPageEntry *p;
 | |
|     int i;
 | |
|     uint16_t s_index = phys_section_unassigned;
 | |
| 
 | |
|     for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
 | |
|         if (lp.ptr == PHYS_MAP_NODE_NIL) {
 | |
|             goto not_found;
 | |
|         }
 | |
|         p = phys_map_nodes[lp.ptr];
 | |
|         lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
 | |
|     }
 | |
| 
 | |
|     s_index = lp.ptr;
 | |
| not_found:
 | |
|     return &phys_sections[s_index];
 | |
| }
 | |
| 
 | |
| bool memory_region_is_unassigned(MemoryRegion *mr)
 | |
| {
 | |
|     return mr != &io_mem_ram && mr != &io_mem_rom
 | |
|         && mr != &io_mem_notdirty && !mr->rom_device
 | |
|         && mr != &io_mem_watch;
 | |
| }
 | |
| 
 | |
| #define mmap_lock() do { } while(0)
 | |
| #define mmap_unlock() do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| /* Currently it is not recommended to allocate big chunks of data in
 | |
|    user mode. It will change when a dedicated libc will be used */
 | |
| #define USE_STATIC_CODE_GEN_BUFFER
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
 | |
|                __attribute__((aligned (CODE_GEN_ALIGN)));
 | |
| #endif
 | |
| 
 | |
| static void code_gen_alloc(unsigned long tb_size)
 | |
| {
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
|     code_gen_buffer = static_code_gen_buffer;
 | |
|     code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
|     map_exec(code_gen_buffer, code_gen_buffer_size);
 | |
| #else
 | |
|     code_gen_buffer_size = tb_size;
 | |
|     if (code_gen_buffer_size == 0) {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
| #else
 | |
|         /* XXX: needs adjustments */
 | |
|         code_gen_buffer_size = (unsigned long)(ram_size / 4);
 | |
| #endif
 | |
|     }
 | |
|     if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
 | |
|         code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
 | |
|     /* The code gen buffer location may have constraints depending on
 | |
|        the host cpu and OS */
 | |
| #if defined(__linux__) 
 | |
|     {
 | |
|         int flags;
 | |
|         void *start = NULL;
 | |
| 
 | |
|         flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
| #if defined(__x86_64__)
 | |
|         flags |= MAP_32BIT;
 | |
|         /* Cannot map more than that */
 | |
|         if (code_gen_buffer_size > (800 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (800 * 1024 * 1024);
 | |
| #elif defined(__sparc_v9__)
 | |
|         // Map the buffer below 2G, so we can use direct calls and branches
 | |
|         flags |= MAP_FIXED;
 | |
|         start = (void *) 0x60000000UL;
 | |
|         if (code_gen_buffer_size > (512 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (512 * 1024 * 1024);
 | |
| #elif defined(__arm__)
 | |
|         /* Keep the buffer no bigger than 16MB to branch between blocks */
 | |
|         if (code_gen_buffer_size > 16 * 1024 * 1024)
 | |
|             code_gen_buffer_size = 16 * 1024 * 1024;
 | |
| #elif defined(__s390x__)
 | |
|         /* Map the buffer so that we can use direct calls and branches.  */
 | |
|         /* We have a +- 4GB range on the branches; leave some slop.  */
 | |
|         if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
 | |
|             code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
 | |
|         }
 | |
|         start = (void *)0x90000000UL;
 | |
| #endif
 | |
|         code_gen_buffer = mmap(start, code_gen_buffer_size,
 | |
|                                PROT_WRITE | PROT_READ | PROT_EXEC,
 | |
|                                flags, -1, 0);
 | |
|         if (code_gen_buffer == MAP_FAILED) {
 | |
|             fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
 | |
|     || defined(__DragonFly__) || defined(__OpenBSD__) \
 | |
|     || defined(__NetBSD__)
 | |
|     {
 | |
|         int flags;
 | |
|         void *addr = NULL;
 | |
|         flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
| #if defined(__x86_64__)
 | |
|         /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
 | |
|          * 0x40000000 is free */
 | |
|         flags |= MAP_FIXED;
 | |
|         addr = (void *)0x40000000;
 | |
|         /* Cannot map more than that */
 | |
|         if (code_gen_buffer_size > (800 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (800 * 1024 * 1024);
 | |
| #elif defined(__sparc_v9__)
 | |
|         // Map the buffer below 2G, so we can use direct calls and branches
 | |
|         flags |= MAP_FIXED;
 | |
|         addr = (void *) 0x60000000UL;
 | |
|         if (code_gen_buffer_size > (512 * 1024 * 1024)) {
 | |
|             code_gen_buffer_size = (512 * 1024 * 1024);
 | |
|         }
 | |
| #endif
 | |
|         code_gen_buffer = mmap(addr, code_gen_buffer_size,
 | |
|                                PROT_WRITE | PROT_READ | PROT_EXEC, 
 | |
|                                flags, -1, 0);
 | |
|         if (code_gen_buffer == MAP_FAILED) {
 | |
|             fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     code_gen_buffer = g_malloc(code_gen_buffer_size);
 | |
|     map_exec(code_gen_buffer, code_gen_buffer_size);
 | |
| #endif
 | |
| #endif /* !USE_STATIC_CODE_GEN_BUFFER */
 | |
|     map_exec(code_gen_prologue, sizeof(code_gen_prologue));
 | |
|     code_gen_buffer_max_size = code_gen_buffer_size -
 | |
|         (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
 | |
|     code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
 | |
|     tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
 | |
| }
 | |
| 
 | |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size
 | |
|    (in bytes) allocated to the translation buffer. Zero means default
 | |
|    size. */
 | |
| void tcg_exec_init(unsigned long tb_size)
 | |
| {
 | |
|     cpu_gen_init();
 | |
|     code_gen_alloc(tb_size);
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
 | |
|     page_init();
 | |
| #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
 | |
|     /* There's no guest base to take into account, so go ahead and
 | |
|        initialize the prologue now.  */
 | |
|     tcg_prologue_init(&tcg_ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool tcg_enabled(void)
 | |
| {
 | |
|     return code_gen_buffer != NULL;
 | |
| }
 | |
| 
 | |
| void cpu_exec_init_all(void)
 | |
| {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     memory_map_init();
 | |
|     io_mem_init();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static int cpu_common_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     CPUArchState *env = opaque;
 | |
| 
 | |
|     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 | |
|        version_id is increased. */
 | |
|     env->interrupt_request &= ~0x01;
 | |
|     tlb_flush(env, 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_cpu_common = {
 | |
|     .name = "cpu_common",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .minimum_version_id_old = 1,
 | |
|     .post_load = cpu_common_post_load,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_UINT32(halted, CPUArchState),
 | |
|         VMSTATE_UINT32(interrupt_request, CPUArchState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| #endif
 | |
| 
 | |
| CPUArchState *qemu_get_cpu(int cpu)
 | |
| {
 | |
|     CPUArchState *env = first_cpu;
 | |
| 
 | |
|     while (env) {
 | |
|         if (env->cpu_index == cpu)
 | |
|             break;
 | |
|         env = env->next_cpu;
 | |
|     }
 | |
| 
 | |
|     return env;
 | |
| }
 | |
| 
 | |
| void cpu_exec_init(CPUArchState *env)
 | |
| {
 | |
|     CPUArchState **penv;
 | |
|     int cpu_index;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     cpu_list_lock();
 | |
| #endif
 | |
|     env->next_cpu = NULL;
 | |
|     penv = &first_cpu;
 | |
|     cpu_index = 0;
 | |
|     while (*penv != NULL) {
 | |
|         penv = &(*penv)->next_cpu;
 | |
|         cpu_index++;
 | |
|     }
 | |
|     env->cpu_index = cpu_index;
 | |
|     env->numa_node = 0;
 | |
|     QTAILQ_INIT(&env->breakpoints);
 | |
|     QTAILQ_INIT(&env->watchpoints);
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     env->thread_id = qemu_get_thread_id();
 | |
| #endif
 | |
|     *penv = env;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     cpu_list_unlock();
 | |
| #endif
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
|     vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
 | |
|     register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
 | |
|                     cpu_save, cpu_load, env);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Allocate a new translation block. Flush the translation buffer if
 | |
|    too many translation blocks or too much generated code. */
 | |
| static TranslationBlock *tb_alloc(target_ulong pc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs >= code_gen_max_blocks ||
 | |
|         (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
 | |
|         return NULL;
 | |
|     tb = &tbs[nb_tbs++];
 | |
|     tb->pc = pc;
 | |
|     tb->cflags = 0;
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| void tb_free(TranslationBlock *tb)
 | |
| {
 | |
|     /* In practice this is mostly used for single use temporary TB
 | |
|        Ignore the hard cases and just back up if this TB happens to
 | |
|        be the last one generated.  */
 | |
|     if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
 | |
|         code_gen_ptr = tb->tc_ptr;
 | |
|         nb_tbs--;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void invalidate_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     if (p->code_bitmap) {
 | |
|         g_free(p->code_bitmap);
 | |
|         p->code_bitmap = NULL;
 | |
|     }
 | |
|     p->code_write_count = 0;
 | |
| }
 | |
| 
 | |
| /* Set to NULL all the 'first_tb' fields in all PageDescs. */
 | |
| 
 | |
| static void page_flush_tb_1 (int level, void **lp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     if (level == 0) {
 | |
|         PageDesc *pd = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             pd[i].first_tb = NULL;
 | |
|             invalidate_page_bitmap(pd + i);
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             page_flush_tb_1 (level - 1, pp + i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void page_flush_tb(void)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < V_L1_SIZE; i++) {
 | |
|         page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* flush all the translation blocks */
 | |
| /* XXX: tb_flush is currently not thread safe */
 | |
| void tb_flush(CPUArchState *env1)
 | |
| {
 | |
|     CPUArchState *env;
 | |
| #if defined(DEBUG_FLUSH)
 | |
|     printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
 | |
|            (unsigned long)(code_gen_ptr - code_gen_buffer),
 | |
|            nb_tbs, nb_tbs > 0 ?
 | |
|            ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
 | |
| #endif
 | |
|     if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
 | |
|         cpu_abort(env1, "Internal error: code buffer overflow\n");
 | |
| 
 | |
|     nb_tbs = 0;
 | |
| 
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
|     }
 | |
| 
 | |
|     memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
 | |
|     page_flush_tb();
 | |
| 
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     /* XXX: flush processor icache at this point if cache flush is
 | |
|        expensive */
 | |
|     tb_flush_count++;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
| 
 | |
| static void tb_invalidate_check(target_ulong address)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i;
 | |
|     address &= TARGET_PAGE_MASK;
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
 | |
|                   address >= tb->pc + tb->size)) {
 | |
|                 printf("ERROR invalidate: address=" TARGET_FMT_lx
 | |
|                        " PC=%08lx size=%04x\n",
 | |
|                        address, (long)tb->pc, tb->size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* verify that all the pages have correct rights for code */
 | |
| static void tb_page_check(void)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i, flags1, flags2;
 | |
| 
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             flags1 = page_get_flags(tb->pc);
 | |
|             flags2 = page_get_flags(tb->pc + tb->size - 1);
 | |
|             if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
 | |
|                 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
 | |
|                        (long)tb->pc, tb->size, flags1, flags2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* invalidate one TB */
 | |
| static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
 | |
|                              int next_offset)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
 | |
|             break;
 | |
|         }
 | |
|         ptb = (TranslationBlock **)((char *)tb1 + next_offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         n1 = (uintptr_t)tb1 & 3;
 | |
|         tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = tb1->page_next[n1];
 | |
|             break;
 | |
|         }
 | |
|         ptb = &tb1->page_next[n1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_jmp_remove(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     ptb = &tb->jmp_next[n];
 | |
|     tb1 = *ptb;
 | |
|     if (tb1) {
 | |
|         /* find tb(n) in circular list */
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (uintptr_t)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             if (n1 == 2) {
 | |
|                 ptb = &tb1->jmp_first;
 | |
|             } else {
 | |
|                 ptb = &tb1->jmp_next[n1];
 | |
|             }
 | |
|         }
 | |
|         /* now we can suppress tb(n) from the list */
 | |
|         *ptb = tb->jmp_next[n];
 | |
| 
 | |
|         tb->jmp_next[n] = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* reset the jump entry 'n' of a TB so that it is not chained to
 | |
|    another TB */
 | |
| static inline void tb_reset_jump(TranslationBlock *tb, int n)
 | |
| {
 | |
|     tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
 | |
| }
 | |
| 
 | |
| void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
 | |
| {
 | |
|     CPUArchState *env;
 | |
|     PageDesc *p;
 | |
|     unsigned int h, n1;
 | |
|     tb_page_addr_t phys_pc;
 | |
|     TranslationBlock *tb1, *tb2;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     tb_remove(&tb_phys_hash[h], tb,
 | |
|               offsetof(TranslationBlock, phys_hash_next));
 | |
| 
 | |
|     /* remove the TB from the page list */
 | |
|     if (tb->page_addr[0] != page_addr) {
 | |
|         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
|     if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
 | |
|         p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     tb_invalidated_flag = 1;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     h = tb_jmp_cache_hash_func(tb->pc);
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         if (env->tb_jmp_cache[h] == tb)
 | |
|             env->tb_jmp_cache[h] = NULL;
 | |
|     }
 | |
| 
 | |
|     /* suppress this TB from the two jump lists */
 | |
|     tb_jmp_remove(tb, 0);
 | |
|     tb_jmp_remove(tb, 1);
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb1 = tb->jmp_first;
 | |
|     for(;;) {
 | |
|         n1 = (uintptr_t)tb1 & 3;
 | |
|         if (n1 == 2)
 | |
|             break;
 | |
|         tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | |
|         tb2 = tb1->jmp_next[n1];
 | |
|         tb_reset_jump(tb1, n1);
 | |
|         tb1->jmp_next[n1] = NULL;
 | |
|         tb1 = tb2;
 | |
|     }
 | |
|     tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
 | |
| 
 | |
|     tb_phys_invalidate_count++;
 | |
| }
 | |
| 
 | |
| static inline void set_bits(uint8_t *tab, int start, int len)
 | |
| {
 | |
|     int end, mask, end1;
 | |
| 
 | |
|     end = start + len;
 | |
|     tab += start >> 3;
 | |
|     mask = 0xff << (start & 7);
 | |
|     if ((start & ~7) == (end & ~7)) {
 | |
|         if (start < end) {
 | |
|             mask &= ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     } else {
 | |
|         *tab++ |= mask;
 | |
|         start = (start + 8) & ~7;
 | |
|         end1 = end & ~7;
 | |
|         while (start < end1) {
 | |
|             *tab++ = 0xff;
 | |
|             start += 8;
 | |
|         }
 | |
|         if (start < end) {
 | |
|             mask = ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void build_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     int n, tb_start, tb_end;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
 | |
| 
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (uintptr_t)tb & 3;
 | |
|         tb = (TranslationBlock *)((uintptr_t)tb & ~3);
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->pc & ~TARGET_PAGE_MASK;
 | |
|             tb_end = tb_start + tb->size;
 | |
|             if (tb_end > TARGET_PAGE_SIZE)
 | |
|                 tb_end = TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             tb_start = 0;
 | |
|             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
| }
 | |
| 
 | |
| TranslationBlock *tb_gen_code(CPUArchState *env,
 | |
|                               target_ulong pc, target_ulong cs_base,
 | |
|                               int flags, int cflags)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint8_t *tc_ptr;
 | |
|     tb_page_addr_t phys_pc, phys_page2;
 | |
|     target_ulong virt_page2;
 | |
|     int code_gen_size;
 | |
| 
 | |
|     phys_pc = get_page_addr_code(env, pc);
 | |
|     tb = tb_alloc(pc);
 | |
|     if (!tb) {
 | |
|         /* flush must be done */
 | |
|         tb_flush(env);
 | |
|         /* cannot fail at this point */
 | |
|         tb = tb_alloc(pc);
 | |
|         /* Don't forget to invalidate previous TB info.  */
 | |
|         tb_invalidated_flag = 1;
 | |
|     }
 | |
|     tc_ptr = code_gen_ptr;
 | |
|     tb->tc_ptr = tc_ptr;
 | |
|     tb->cs_base = cs_base;
 | |
|     tb->flags = flags;
 | |
|     tb->cflags = cflags;
 | |
|     cpu_gen_code(env, tb, &code_gen_size);
 | |
|     code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
 | |
|                              CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
 | |
| 
 | |
|     /* check next page if needed */
 | |
|     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | |
|         phys_page2 = get_page_addr_code(env, virt_page2);
 | |
|     }
 | |
|     tb_link_page(tb, phys_pc, phys_page2);
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate all TBs which intersect with the target physical address range
 | |
|  * [start;end[. NOTE: start and end may refer to *different* physical pages.
 | |
|  * 'is_cpu_write_access' should be true if called from a real cpu write
 | |
|  * access: the virtual CPU will exit the current TB if code is modified inside
 | |
|  * this TB.
 | |
|  */
 | |
| void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
 | |
|                               int is_cpu_write_access)
 | |
| {
 | |
|     while (start < end) {
 | |
|         tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
 | |
|         start &= TARGET_PAGE_MASK;
 | |
|         start += TARGET_PAGE_SIZE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate all TBs which intersect with the target physical address range
 | |
|  * [start;end[. NOTE: start and end must refer to the *same* physical page.
 | |
|  * 'is_cpu_write_access' should be true if called from a real cpu write
 | |
|  * access: the virtual CPU will exit the current TB if code is modified inside
 | |
|  * this TB.
 | |
|  */
 | |
| void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
 | |
|                                    int is_cpu_write_access)
 | |
| {
 | |
|     TranslationBlock *tb, *tb_next, *saved_tb;
 | |
|     CPUArchState *env = cpu_single_env;
 | |
|     tb_page_addr_t tb_start, tb_end;
 | |
|     PageDesc *p;
 | |
|     int n;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     int current_tb_not_found = is_cpu_write_access;
 | |
|     TranslationBlock *current_tb = NULL;
 | |
|     int current_tb_modified = 0;
 | |
|     target_ulong current_pc = 0;
 | |
|     target_ulong current_cs_base = 0;
 | |
|     int current_flags = 0;
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
| 
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     if (!p->code_bitmap &&
 | |
|         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
 | |
|         is_cpu_write_access) {
 | |
|         /* build code bitmap */
 | |
|         build_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     /* we remove all the TBs in the range [start, end[ */
 | |
|     /* XXX: see if in some cases it could be faster to invalidate all the code */
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (uintptr_t)tb & 3;
 | |
|         tb = (TranslationBlock *)((uintptr_t)tb & ~3);
 | |
|         tb_next = tb->page_next[n];
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|             tb_end = tb_start + tb->size;
 | |
|         } else {
 | |
|             tb_start = tb->page_addr[1];
 | |
|             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         if (!(tb_end <= start || tb_start >= end)) {
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|             if (current_tb_not_found) {
 | |
|                 current_tb_not_found = 0;
 | |
|                 current_tb = NULL;
 | |
|                 if (env->mem_io_pc) {
 | |
|                     /* now we have a real cpu fault */
 | |
|                     current_tb = tb_find_pc(env->mem_io_pc);
 | |
|                 }
 | |
|             }
 | |
|             if (current_tb == tb &&
 | |
|                 (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                 its execution. We could be more precise by checking
 | |
|                 that the modification is after the current PC, but it
 | |
|                 would require a specialized function to partially
 | |
|                 restore the CPU state */
 | |
| 
 | |
|                 current_tb_modified = 1;
 | |
|                 cpu_restore_state(current_tb, env, env->mem_io_pc);
 | |
|                 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | |
|                                      ¤t_flags);
 | |
|             }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|             /* we need to do that to handle the case where a signal
 | |
|                occurs while doing tb_phys_invalidate() */
 | |
|             saved_tb = NULL;
 | |
|             if (env) {
 | |
|                 saved_tb = env->current_tb;
 | |
|                 env->current_tb = NULL;
 | |
|             }
 | |
|             tb_phys_invalidate(tb, -1);
 | |
|             if (env) {
 | |
|                 env->current_tb = saved_tb;
 | |
|                 if (env->interrupt_request && env->current_tb)
 | |
|                     cpu_interrupt(env, env->interrupt_request);
 | |
|             }
 | |
|         }
 | |
|         tb = tb_next;
 | |
|     }
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     /* if no code remaining, no need to continue to use slow writes */
 | |
|     if (!p->first_tb) {
 | |
|         invalidate_page_bitmap(p);
 | |
|         if (is_cpu_write_access) {
 | |
|             tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | |
|         cpu_resume_from_signal(env, NULL);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* len must be <= 8 and start must be a multiple of len */
 | |
| static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     int offset, b;
 | |
| #if 0
 | |
|     if (1) {
 | |
|         qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
 | |
|                   cpu_single_env->mem_io_vaddr, len,
 | |
|                   cpu_single_env->eip,
 | |
|                   cpu_single_env->eip +
 | |
|                   (intptr_t)cpu_single_env->segs[R_CS].base);
 | |
|     }
 | |
| #endif
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     if (p->code_bitmap) {
 | |
|         offset = start & ~TARGET_PAGE_MASK;
 | |
|         b = p->code_bitmap[offset >> 3] >> (offset & 7);
 | |
|         if (b & ((1 << len) - 1))
 | |
|             goto do_invalidate;
 | |
|     } else {
 | |
|     do_invalidate:
 | |
|         tb_invalidate_phys_page_range(start, start + len, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
| static void tb_invalidate_phys_page(tb_page_addr_t addr,
 | |
|                                     uintptr_t pc, void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     PageDesc *p;
 | |
|     int n;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     TranslationBlock *current_tb = NULL;
 | |
|     CPUArchState *env = cpu_single_env;
 | |
|     int current_tb_modified = 0;
 | |
|     target_ulong current_pc = 0;
 | |
|     target_ulong current_cs_base = 0;
 | |
|     int current_flags = 0;
 | |
| #endif
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     tb = p->first_tb;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (tb && pc != 0) {
 | |
|         current_tb = tb_find_pc(pc);
 | |
|     }
 | |
| #endif
 | |
|     while (tb != NULL) {
 | |
|         n = (uintptr_t)tb & 3;
 | |
|         tb = (TranslationBlock *)((uintptr_t)tb & ~3);
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|         if (current_tb == tb &&
 | |
|             (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                    its execution. We could be more precise by checking
 | |
|                    that the modification is after the current PC, but it
 | |
|                    would require a specialized function to partially
 | |
|                    restore the CPU state */
 | |
| 
 | |
|             current_tb_modified = 1;
 | |
|             cpu_restore_state(current_tb, env, pc);
 | |
|             cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | |
|                                  ¤t_flags);
 | |
|         }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|         tb_phys_invalidate(tb, addr);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
|     p->first_tb = NULL;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* add the tb in the target page and protect it if necessary */
 | |
| static inline void tb_alloc_page(TranslationBlock *tb,
 | |
|                                  unsigned int n, tb_page_addr_t page_addr)
 | |
| {
 | |
|     PageDesc *p;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     bool page_already_protected;
 | |
| #endif
 | |
| 
 | |
|     tb->page_addr[n] = page_addr;
 | |
|     p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
 | |
|     tb->page_next[n] = p->first_tb;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     page_already_protected = p->first_tb != NULL;
 | |
| #endif
 | |
|     p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
 | |
|     invalidate_page_bitmap(p);
 | |
| 
 | |
| #if defined(TARGET_HAS_SMC) || 1
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     if (p->flags & PAGE_WRITE) {
 | |
|         target_ulong addr;
 | |
|         PageDesc *p2;
 | |
|         int prot;
 | |
| 
 | |
|         /* force the host page as non writable (writes will have a
 | |
|            page fault + mprotect overhead) */
 | |
|         page_addr &= qemu_host_page_mask;
 | |
|         prot = 0;
 | |
|         for(addr = page_addr; addr < page_addr + qemu_host_page_size;
 | |
|             addr += TARGET_PAGE_SIZE) {
 | |
| 
 | |
|             p2 = page_find (addr >> TARGET_PAGE_BITS);
 | |
|             if (!p2)
 | |
|                 continue;
 | |
|             prot |= p2->flags;
 | |
|             p2->flags &= ~PAGE_WRITE;
 | |
|           }
 | |
|         mprotect(g2h(page_addr), qemu_host_page_size,
 | |
|                  (prot & PAGE_BITS) & ~PAGE_WRITE);
 | |
| #ifdef DEBUG_TB_INVALIDATE
 | |
|         printf("protecting code page: 0x" TARGET_FMT_lx "\n",
 | |
|                page_addr);
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     /* if some code is already present, then the pages are already
 | |
|        protected. So we handle the case where only the first TB is
 | |
|        allocated in a physical page */
 | |
|     if (!page_already_protected) {
 | |
|         tlb_protect_code(page_addr);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #endif /* TARGET_HAS_SMC */
 | |
| }
 | |
| 
 | |
| /* add a new TB and link it to the physical page tables. phys_page2 is
 | |
|    (-1) to indicate that only one page contains the TB. */
 | |
| void tb_link_page(TranslationBlock *tb,
 | |
|                   tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
 | |
| {
 | |
|     unsigned int h;
 | |
|     TranslationBlock **ptb;
 | |
| 
 | |
|     /* Grab the mmap lock to stop another thread invalidating this TB
 | |
|        before we are done.  */
 | |
|     mmap_lock();
 | |
|     /* add in the physical hash table */
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     ptb = &tb_phys_hash[h];
 | |
|     tb->phys_hash_next = *ptb;
 | |
|     *ptb = tb;
 | |
| 
 | |
|     /* add in the page list */
 | |
|     tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
 | |
|     if (phys_page2 != -1)
 | |
|         tb_alloc_page(tb, 1, phys_page2);
 | |
|     else
 | |
|         tb->page_addr[1] = -1;
 | |
| 
 | |
|     tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
 | |
|     tb->jmp_next[0] = NULL;
 | |
|     tb->jmp_next[1] = NULL;
 | |
| 
 | |
|     /* init original jump addresses */
 | |
|     if (tb->tb_next_offset[0] != 0xffff)
 | |
|         tb_reset_jump(tb, 0);
 | |
|     if (tb->tb_next_offset[1] != 0xffff)
 | |
|         tb_reset_jump(tb, 1);
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|     tb_page_check();
 | |
| #endif
 | |
|     mmap_unlock();
 | |
| }
 | |
| 
 | |
| /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
 | |
|    tb[1].tc_ptr. Return NULL if not found */
 | |
| TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
 | |
| {
 | |
|     int m_min, m_max, m;
 | |
|     uintptr_t v;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs <= 0)
 | |
|         return NULL;
 | |
|     if (tc_ptr < (uintptr_t)code_gen_buffer ||
 | |
|         tc_ptr >= (uintptr_t)code_gen_ptr) {
 | |
|         return NULL;
 | |
|     }
 | |
|     /* binary search (cf Knuth) */
 | |
|     m_min = 0;
 | |
|     m_max = nb_tbs - 1;
 | |
|     while (m_min <= m_max) {
 | |
|         m = (m_min + m_max) >> 1;
 | |
|         tb = &tbs[m];
 | |
|         v = (uintptr_t)tb->tc_ptr;
 | |
|         if (v == tc_ptr)
 | |
|             return tb;
 | |
|         else if (tc_ptr < v) {
 | |
|             m_max = m - 1;
 | |
|         } else {
 | |
|             m_min = m + 1;
 | |
|         }
 | |
|     }
 | |
|     return &tbs[m_max];
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb);
 | |
| 
 | |
| static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, *tb_next, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     tb1 = tb->jmp_next[n];
 | |
|     if (tb1 != NULL) {
 | |
|         /* find head of list */
 | |
|         for(;;) {
 | |
|             n1 = (uintptr_t)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | |
|             if (n1 == 2)
 | |
|                 break;
 | |
|             tb1 = tb1->jmp_next[n1];
 | |
|         }
 | |
|         /* we are now sure now that tb jumps to tb1 */
 | |
|         tb_next = tb1;
 | |
| 
 | |
|         /* remove tb from the jmp_first list */
 | |
|         ptb = &tb_next->jmp_first;
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (uintptr_t)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             ptb = &tb1->jmp_next[n1];
 | |
|         }
 | |
|         *ptb = tb->jmp_next[n];
 | |
|         tb->jmp_next[n] = NULL;
 | |
| 
 | |
|         /* suppress the jump to next tb in generated code */
 | |
|         tb_reset_jump(tb, n);
 | |
| 
 | |
|         /* suppress jumps in the tb on which we could have jumped */
 | |
|         tb_reset_jump_recursive(tb_next);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb)
 | |
| {
 | |
|     tb_reset_jump_recursive2(tb, 0);
 | |
|     tb_reset_jump_recursive2(tb, 1);
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_HAS_ICE)
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 | |
| {
 | |
|     tb_invalidate_phys_page_range(pc, pc + 1, 0);
 | |
| }
 | |
| #else
 | |
| void tb_invalidate_phys_addr(target_phys_addr_t addr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!(memory_region_is_ram(section->mr)
 | |
|           || (section->mr->rom_device && section->mr->readable))) {
 | |
|         return;
 | |
|     }
 | |
|     ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | |
|         + memory_region_section_addr(section, addr);
 | |
|     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
 | |
| }
 | |
| 
 | |
| static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 | |
| {
 | |
|     tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
 | |
|             (pc & ~TARGET_PAGE_MASK));
 | |
| }
 | |
| #endif
 | |
| #endif /* TARGET_HAS_ICE */
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | |
| 
 | |
| {
 | |
| }
 | |
| 
 | |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| #else
 | |
| /* Add a watchpoint.  */
 | |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     target_ulong len_mask = ~(len - 1);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
 | |
|     if ((len & (len - 1)) || (addr & ~len_mask) ||
 | |
|             len == 0 || len > TARGET_PAGE_SIZE) {
 | |
|         fprintf(stderr, "qemu: tried to set invalid watchpoint at "
 | |
|                 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     wp = g_malloc(sizeof(*wp));
 | |
| 
 | |
|     wp->vaddr = addr;
 | |
|     wp->len_mask = len_mask;
 | |
|     wp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected watchpoints in front */
 | |
|     if (flags & BP_GDB)
 | |
|         QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
 | |
|     else
 | |
|         QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
 | |
| 
 | |
|     tlb_flush_page(env, addr);
 | |
| 
 | |
|     if (watchpoint)
 | |
|         *watchpoint = wp;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint.  */
 | |
| int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags)
 | |
| {
 | |
|     target_ulong len_mask = ~(len - 1);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if (addr == wp->vaddr && len_mask == wp->len_mask
 | |
|                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 | |
|             cpu_watchpoint_remove_by_ref(env, wp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint by reference.  */
 | |
| void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
 | |
| {
 | |
|     QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
 | |
| 
 | |
|     tlb_flush_page(env, watchpoint->vaddr);
 | |
| 
 | |
|     g_free(watchpoint);
 | |
| }
 | |
| 
 | |
| /* Remove all matching watchpoints.  */
 | |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | |
| {
 | |
|     CPUWatchpoint *wp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
 | |
|         if (wp->flags & mask)
 | |
|             cpu_watchpoint_remove_by_ref(env, wp);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Add a breakpoint.  */
 | |
| int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
 | |
|                           CPUBreakpoint **breakpoint)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     bp = g_malloc(sizeof(*bp));
 | |
| 
 | |
|     bp->pc = pc;
 | |
|     bp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected breakpoints in front */
 | |
|     if (flags & BP_GDB)
 | |
|         QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
 | |
|     else
 | |
|         QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
 | |
| 
 | |
|     breakpoint_invalidate(env, pc);
 | |
| 
 | |
|     if (breakpoint)
 | |
|         *breakpoint = bp;
 | |
|     return 0;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint.  */
 | |
| int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | |
|         if (bp->pc == pc && bp->flags == flags) {
 | |
|             cpu_breakpoint_remove_by_ref(env, bp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint by reference.  */
 | |
| void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
 | |
| 
 | |
|     breakpoint_invalidate(env, breakpoint->pc);
 | |
| 
 | |
|     g_free(breakpoint);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove all matching breakpoints. */
 | |
| void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
 | |
|         if (bp->flags & mask)
 | |
|             cpu_breakpoint_remove_by_ref(env, bp);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the
 | |
|    CPU loop after each instruction */
 | |
| void cpu_single_step(CPUArchState *env, int enabled)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     if (env->singlestep_enabled != enabled) {
 | |
|         env->singlestep_enabled = enabled;
 | |
|         if (kvm_enabled())
 | |
|             kvm_update_guest_debug(env, 0);
 | |
|         else {
 | |
|             /* must flush all the translated code to avoid inconsistencies */
 | |
|             /* XXX: only flush what is necessary */
 | |
|             tb_flush(env);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void cpu_unlink_tb(CPUArchState *env)
 | |
| {
 | |
|     /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
 | |
|        problem and hope the cpu will stop of its own accord.  For userspace
 | |
|        emulation this often isn't actually as bad as it sounds.  Often
 | |
|        signals are used primarily to interrupt blocking syscalls.  */
 | |
|     TranslationBlock *tb;
 | |
|     static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
|     spin_lock(&interrupt_lock);
 | |
|     tb = env->current_tb;
 | |
|     /* if the cpu is currently executing code, we must unlink it and
 | |
|        all the potentially executing TB */
 | |
|     if (tb) {
 | |
|         env->current_tb = NULL;
 | |
|         tb_reset_jump_recursive(tb);
 | |
|     }
 | |
|     spin_unlock(&interrupt_lock);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* mask must never be zero, except for A20 change call */
 | |
| static void tcg_handle_interrupt(CPUArchState *env, int mask)
 | |
| {
 | |
|     int old_mask;
 | |
| 
 | |
|     old_mask = env->interrupt_request;
 | |
|     env->interrupt_request |= mask;
 | |
| 
 | |
|     /*
 | |
|      * If called from iothread context, wake the target cpu in
 | |
|      * case its halted.
 | |
|      */
 | |
|     if (!qemu_cpu_is_self(env)) {
 | |
|         qemu_cpu_kick(env);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (use_icount) {
 | |
|         env->icount_decr.u16.high = 0xffff;
 | |
|         if (!can_do_io(env)
 | |
|             && (mask & ~old_mask) != 0) {
 | |
|             cpu_abort(env, "Raised interrupt while not in I/O function");
 | |
|         }
 | |
|     } else {
 | |
|         cpu_unlink_tb(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
 | |
| 
 | |
| #else /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void cpu_interrupt(CPUArchState *env, int mask)
 | |
| {
 | |
|     env->interrupt_request |= mask;
 | |
|     cpu_unlink_tb(env);
 | |
| }
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void cpu_reset_interrupt(CPUArchState *env, int mask)
 | |
| {
 | |
|     env->interrupt_request &= ~mask;
 | |
| }
 | |
| 
 | |
| void cpu_exit(CPUArchState *env)
 | |
| {
 | |
|     env->exit_request = 1;
 | |
|     cpu_unlink_tb(env);
 | |
| }
 | |
| 
 | |
| void cpu_abort(CPUArchState *env, const char *fmt, ...)
 | |
| {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     fprintf(stderr, "qemu: fatal: ");
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     fprintf(stderr, "\n");
 | |
| #ifdef TARGET_I386
 | |
|     cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|     cpu_dump_state(env, stderr, fprintf, 0);
 | |
| #endif
 | |
|     if (qemu_log_enabled()) {
 | |
|         qemu_log("qemu: fatal: ");
 | |
|         qemu_log_vprintf(fmt, ap2);
 | |
|         qemu_log("\n");
 | |
| #ifdef TARGET_I386
 | |
|         log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|         log_cpu_state(env, 0);
 | |
| #endif
 | |
|         qemu_log_flush();
 | |
|         qemu_log_close();
 | |
|     }
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
|         struct sigaction act;
 | |
|         sigfillset(&act.sa_mask);
 | |
|         act.sa_handler = SIG_DFL;
 | |
|         sigaction(SIGABRT, &act, NULL);
 | |
|     }
 | |
| #endif
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| CPUArchState *cpu_copy(CPUArchState *env)
 | |
| {
 | |
|     CPUArchState *new_env = cpu_init(env->cpu_model_str);
 | |
|     CPUArchState *next_cpu = new_env->next_cpu;
 | |
|     int cpu_index = new_env->cpu_index;
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
|     CPUWatchpoint *wp;
 | |
| #endif
 | |
| 
 | |
|     memcpy(new_env, env, sizeof(CPUArchState));
 | |
| 
 | |
|     /* Preserve chaining and index. */
 | |
|     new_env->next_cpu = next_cpu;
 | |
|     new_env->cpu_index = cpu_index;
 | |
| 
 | |
|     /* Clone all break/watchpoints.
 | |
|        Note: Once we support ptrace with hw-debug register access, make sure
 | |
|        BP_CPU break/watchpoints are handled correctly on clone. */
 | |
|     QTAILQ_INIT(&env->breakpoints);
 | |
|     QTAILQ_INIT(&env->watchpoints);
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | |
|         cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
 | |
|     }
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
 | |
|                               wp->flags, NULL);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return new_env;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
 | |
| {
 | |
|     unsigned int i;
 | |
| 
 | |
|     /* Discard jump cache entries for any tb which might potentially
 | |
|        overlap the flushed page.  */
 | |
|     i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
 | |
|     memset (&env->tb_jmp_cache[i], 0, 
 | |
|             TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | |
| 
 | |
|     i = tb_jmp_cache_hash_page(addr);
 | |
|     memset (&env->tb_jmp_cache[i], 0, 
 | |
|             TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | |
| }
 | |
| 
 | |
| static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
 | |
|                                       uintptr_t length)
 | |
| {
 | |
|     uintptr_t start1;
 | |
| 
 | |
|     /* we modify the TLB cache so that the dirty bit will be set again
 | |
|        when accessing the range */
 | |
|     start1 = (uintptr_t)qemu_safe_ram_ptr(start);
 | |
|     /* Check that we don't span multiple blocks - this breaks the
 | |
|        address comparisons below.  */
 | |
|     if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
 | |
|             != (end - 1) - start) {
 | |
|         abort();
 | |
|     }
 | |
|     cpu_tlb_reset_dirty_all(start1, length);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Note: start and end must be within the same ram block.  */
 | |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | |
|                                      int dirty_flags)
 | |
| {
 | |
|     uintptr_t length;
 | |
| 
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     length = end - start;
 | |
|     if (length == 0)
 | |
|         return;
 | |
|     cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
 | |
| 
 | |
|     if (tcg_enabled()) {
 | |
|         tlb_reset_dirty_range_all(start, end, length);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int cpu_physical_memory_set_dirty_tracking(int enable)
 | |
| {
 | |
|     int ret = 0;
 | |
|     in_migration = enable;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
 | |
|                                                    MemoryRegionSection *section,
 | |
|                                                    target_ulong vaddr,
 | |
|                                                    target_phys_addr_t paddr,
 | |
|                                                    int prot,
 | |
|                                                    target_ulong *address)
 | |
| {
 | |
|     target_phys_addr_t iotlb;
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     if (memory_region_is_ram(section->mr)) {
 | |
|         /* Normal RAM.  */
 | |
|         iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | |
|             + memory_region_section_addr(section, paddr);
 | |
|         if (!section->readonly) {
 | |
|             iotlb |= phys_section_notdirty;
 | |
|         } else {
 | |
|             iotlb |= phys_section_rom;
 | |
|         }
 | |
|     } else {
 | |
|         /* IO handlers are currently passed a physical address.
 | |
|            It would be nice to pass an offset from the base address
 | |
|            of that region.  This would avoid having to special case RAM,
 | |
|            and avoid full address decoding in every device.
 | |
|            We can't use the high bits of pd for this because
 | |
|            IO_MEM_ROMD uses these as a ram address.  */
 | |
|         iotlb = section - phys_sections;
 | |
|         iotlb += memory_region_section_addr(section, paddr);
 | |
|     }
 | |
| 
 | |
|     /* Make accesses to pages with watchpoints go via the
 | |
|        watchpoint trap routines.  */
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
 | |
|             /* Avoid trapping reads of pages with a write breakpoint. */
 | |
|             if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
 | |
|                 iotlb = phys_section_watch + paddr;
 | |
|                 *address |= TLB_MMIO;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return iotlb;
 | |
| }
 | |
| 
 | |
| #else
 | |
| /*
 | |
|  * Walks guest process memory "regions" one by one
 | |
|  * and calls callback function 'fn' for each region.
 | |
|  */
 | |
| 
 | |
| struct walk_memory_regions_data
 | |
| {
 | |
|     walk_memory_regions_fn fn;
 | |
|     void *priv;
 | |
|     uintptr_t start;
 | |
|     int prot;
 | |
| };
 | |
| 
 | |
| static int walk_memory_regions_end(struct walk_memory_regions_data *data,
 | |
|                                    abi_ulong end, int new_prot)
 | |
| {
 | |
|     if (data->start != -1ul) {
 | |
|         int rc = data->fn(data->priv, data->start, end, data->prot);
 | |
|         if (rc != 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     data->start = (new_prot ? end : -1ul);
 | |
|     data->prot = new_prot;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int walk_memory_regions_1(struct walk_memory_regions_data *data,
 | |
|                                  abi_ulong base, int level, void **lp)
 | |
| {
 | |
|     abi_ulong pa;
 | |
|     int i, rc;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return walk_memory_regions_end(data, base, 0);
 | |
|     }
 | |
| 
 | |
|     if (level == 0) {
 | |
|         PageDesc *pd = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             int prot = pd[i].flags;
 | |
| 
 | |
|             pa = base | (i << TARGET_PAGE_BITS);
 | |
|             if (prot != data->prot) {
 | |
|                 rc = walk_memory_regions_end(data, pa, prot);
 | |
|                 if (rc != 0) {
 | |
|                     return rc;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             pa = base | ((abi_ulong)i <<
 | |
|                 (TARGET_PAGE_BITS + L2_BITS * level));
 | |
|             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
 | |
|             if (rc != 0) {
 | |
|                 return rc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
 | |
| {
 | |
|     struct walk_memory_regions_data data;
 | |
|     uintptr_t i;
 | |
| 
 | |
|     data.fn = fn;
 | |
|     data.priv = priv;
 | |
|     data.start = -1ul;
 | |
|     data.prot = 0;
 | |
| 
 | |
|     for (i = 0; i < V_L1_SIZE; i++) {
 | |
|         int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
 | |
|                                        V_L1_SHIFT / L2_BITS - 1, l1_map + i);
 | |
|         if (rc != 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return walk_memory_regions_end(&data, 0, 0);
 | |
| }
 | |
| 
 | |
| static int dump_region(void *priv, abi_ulong start,
 | |
|     abi_ulong end, unsigned long prot)
 | |
| {
 | |
|     FILE *f = (FILE *)priv;
 | |
| 
 | |
|     (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
 | |
|         " "TARGET_ABI_FMT_lx" %c%c%c\n",
 | |
|         start, end, end - start,
 | |
|         ((prot & PAGE_READ) ? 'r' : '-'),
 | |
|         ((prot & PAGE_WRITE) ? 'w' : '-'),
 | |
|         ((prot & PAGE_EXEC) ? 'x' : '-'));
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /* dump memory mappings */
 | |
| void page_dump(FILE *f)
 | |
| {
 | |
|     (void) fprintf(f, "%-8s %-8s %-8s %s\n",
 | |
|             "start", "end", "size", "prot");
 | |
|     walk_memory_regions(f, dump_region);
 | |
| }
 | |
| 
 | |
| int page_get_flags(target_ulong address)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return 0;
 | |
|     return p->flags;
 | |
| }
 | |
| 
 | |
| /* Modify the flags of a page and invalidate the code if necessary.
 | |
|    The flag PAGE_WRITE_ORG is positioned automatically depending
 | |
|    on PAGE_WRITE.  The mmap_lock should already be held.  */
 | |
| void page_set_flags(target_ulong start, target_ulong end, int flags)
 | |
| {
 | |
|     target_ulong addr, len;
 | |
| 
 | |
|     /* This function should never be called with addresses outside the
 | |
|        guest address space.  If this assert fires, it probably indicates
 | |
|        a missing call to h2g_valid.  */
 | |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | |
|     assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | |
| #endif
 | |
|     assert(start < end);
 | |
| 
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     if (flags & PAGE_WRITE) {
 | |
|         flags |= PAGE_WRITE_ORG;
 | |
|     }
 | |
| 
 | |
|     for (addr = start, len = end - start;
 | |
|          len != 0;
 | |
|          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | |
|         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | |
| 
 | |
|         /* If the write protection bit is set, then we invalidate
 | |
|            the code inside.  */
 | |
|         if (!(p->flags & PAGE_WRITE) &&
 | |
|             (flags & PAGE_WRITE) &&
 | |
|             p->first_tb) {
 | |
|             tb_invalidate_phys_page(addr, 0, NULL);
 | |
|         }
 | |
|         p->flags = flags;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int page_check_range(target_ulong start, target_ulong len, int flags)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     target_ulong end;
 | |
|     target_ulong addr;
 | |
| 
 | |
|     /* This function should never be called with addresses outside the
 | |
|        guest address space.  If this assert fires, it probably indicates
 | |
|        a missing call to h2g_valid.  */
 | |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | |
|     assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | |
| #endif
 | |
| 
 | |
|     if (len == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (start + len - 1 < start) {
 | |
|         /* We've wrapped around.  */
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
| 
 | |
|     for (addr = start, len = end - start;
 | |
|          len != 0;
 | |
|          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | |
|         p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|         if( !p )
 | |
|             return -1;
 | |
|         if( !(p->flags & PAGE_VALID) )
 | |
|             return -1;
 | |
| 
 | |
|         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
 | |
|             return -1;
 | |
|         if (flags & PAGE_WRITE) {
 | |
|             if (!(p->flags & PAGE_WRITE_ORG))
 | |
|                 return -1;
 | |
|             /* unprotect the page if it was put read-only because it
 | |
|                contains translated code */
 | |
|             if (!(p->flags & PAGE_WRITE)) {
 | |
|                 if (!page_unprotect(addr, 0, NULL))
 | |
|                     return -1;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* called from signal handler: invalidate the code and unprotect the
 | |
|    page. Return TRUE if the fault was successfully handled. */
 | |
| int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
 | |
| {
 | |
|     unsigned int prot;
 | |
|     PageDesc *p;
 | |
|     target_ulong host_start, host_end, addr;
 | |
| 
 | |
|     /* Technically this isn't safe inside a signal handler.  However we
 | |
|        know this only ever happens in a synchronous SEGV handler, so in
 | |
|        practice it seems to be ok.  */
 | |
|     mmap_lock();
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         mmap_unlock();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* if the page was really writable, then we change its
 | |
|        protection back to writable */
 | |
|     if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
 | |
|         host_start = address & qemu_host_page_mask;
 | |
|         host_end = host_start + qemu_host_page_size;
 | |
| 
 | |
|         prot = 0;
 | |
|         for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
 | |
|             p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|             p->flags |= PAGE_WRITE;
 | |
|             prot |= p->flags;
 | |
| 
 | |
|             /* and since the content will be modified, we must invalidate
 | |
|                the corresponding translated code. */
 | |
|             tb_invalidate_phys_page(addr, pc, puc);
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|             tb_invalidate_check(addr);
 | |
| #endif
 | |
|         }
 | |
|         mprotect((void *)g2h(host_start), qemu_host_page_size,
 | |
|                  prot & PAGE_BITS);
 | |
| 
 | |
|         mmap_unlock();
 | |
|         return 1;
 | |
|     }
 | |
|     mmap_unlock();
 | |
|     return 0;
 | |
| }
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | |
| typedef struct subpage_t {
 | |
|     MemoryRegion iomem;
 | |
|     target_phys_addr_t base;
 | |
|     uint16_t sub_section[TARGET_PAGE_SIZE];
 | |
| } subpage_t;
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              uint16_t section);
 | |
| static subpage_t *subpage_init(target_phys_addr_t base);
 | |
| static void destroy_page_desc(uint16_t section_index)
 | |
| {
 | |
|     MemoryRegionSection *section = &phys_sections[section_index];
 | |
|     MemoryRegion *mr = section->mr;
 | |
| 
 | |
|     if (mr->subpage) {
 | |
|         subpage_t *subpage = container_of(mr, subpage_t, iomem);
 | |
|         memory_region_destroy(&subpage->iomem);
 | |
|         g_free(subpage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
 | |
| {
 | |
|     unsigned i;
 | |
|     PhysPageEntry *p;
 | |
| 
 | |
|     if (lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     p = phys_map_nodes[lp->ptr];
 | |
|     for (i = 0; i < L2_SIZE; ++i) {
 | |
|         if (!p[i].is_leaf) {
 | |
|             destroy_l2_mapping(&p[i], level - 1);
 | |
|         } else {
 | |
|             destroy_page_desc(p[i].ptr);
 | |
|         }
 | |
|     }
 | |
|     lp->is_leaf = 0;
 | |
|     lp->ptr = PHYS_MAP_NODE_NIL;
 | |
| }
 | |
| 
 | |
| static void destroy_all_mappings(void)
 | |
| {
 | |
|     destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
 | |
|     phys_map_nodes_reset();
 | |
| }
 | |
| 
 | |
| static uint16_t phys_section_add(MemoryRegionSection *section)
 | |
| {
 | |
|     if (phys_sections_nb == phys_sections_nb_alloc) {
 | |
|         phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
 | |
|         phys_sections = g_renew(MemoryRegionSection, phys_sections,
 | |
|                                 phys_sections_nb_alloc);
 | |
|     }
 | |
|     phys_sections[phys_sections_nb] = *section;
 | |
|     return phys_sections_nb++;
 | |
| }
 | |
| 
 | |
| static void phys_sections_clear(void)
 | |
| {
 | |
|     phys_sections_nb = 0;
 | |
| }
 | |
| 
 | |
| static void register_subpage(MemoryRegionSection *section)
 | |
| {
 | |
|     subpage_t *subpage;
 | |
|     target_phys_addr_t base = section->offset_within_address_space
 | |
|         & TARGET_PAGE_MASK;
 | |
|     MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
 | |
|     MemoryRegionSection subsection = {
 | |
|         .offset_within_address_space = base,
 | |
|         .size = TARGET_PAGE_SIZE,
 | |
|     };
 | |
|     target_phys_addr_t start, end;
 | |
| 
 | |
|     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 | |
| 
 | |
|     if (!(existing->mr->subpage)) {
 | |
|         subpage = subpage_init(base);
 | |
|         subsection.mr = &subpage->iomem;
 | |
|         phys_page_set(base >> TARGET_PAGE_BITS, 1,
 | |
|                       phys_section_add(&subsection));
 | |
|     } else {
 | |
|         subpage = container_of(existing->mr, subpage_t, iomem);
 | |
|     }
 | |
|     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
 | |
|     end = start + section->size - 1;
 | |
|     subpage_register(subpage, start, end, phys_section_add(section));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void register_multipage(MemoryRegionSection *section)
 | |
| {
 | |
|     target_phys_addr_t start_addr = section->offset_within_address_space;
 | |
|     ram_addr_t size = section->size;
 | |
|     target_phys_addr_t addr;
 | |
|     uint16_t section_index = phys_section_add(section);
 | |
| 
 | |
|     assert(size);
 | |
| 
 | |
|     addr = start_addr;
 | |
|     phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
 | |
|                   section_index);
 | |
| }
 | |
| 
 | |
| void cpu_register_physical_memory_log(MemoryRegionSection *section,
 | |
|                                       bool readonly)
 | |
| {
 | |
|     MemoryRegionSection now = *section, remain = *section;
 | |
| 
 | |
|     if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
 | |
|         || (now.size < TARGET_PAGE_SIZE)) {
 | |
|         now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
 | |
|                        - now.offset_within_address_space,
 | |
|                        now.size);
 | |
|         register_subpage(&now);
 | |
|         remain.size -= now.size;
 | |
|         remain.offset_within_address_space += now.size;
 | |
|         remain.offset_within_region += now.size;
 | |
|     }
 | |
|     while (remain.size >= TARGET_PAGE_SIZE) {
 | |
|         now = remain;
 | |
|         if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
 | |
|             now.size = TARGET_PAGE_SIZE;
 | |
|             register_subpage(&now);
 | |
|         } else {
 | |
|             now.size &= TARGET_PAGE_MASK;
 | |
|             register_multipage(&now);
 | |
|         }
 | |
|         remain.size -= now.size;
 | |
|         remain.offset_within_address_space += now.size;
 | |
|         remain.offset_within_region += now.size;
 | |
|     }
 | |
|     now = remain;
 | |
|     if (now.size) {
 | |
|         register_subpage(&now);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_coalesce_mmio_region(addr, size);
 | |
| }
 | |
| 
 | |
| void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_uncoalesce_mmio_region(addr, size);
 | |
| }
 | |
| 
 | |
| void qemu_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_flush_coalesced_mmio_buffer();
 | |
| }
 | |
| 
 | |
| #if defined(__linux__) && !defined(TARGET_S390X)
 | |
| 
 | |
| #include <sys/vfs.h>
 | |
| 
 | |
| #define HUGETLBFS_MAGIC       0x958458f6
 | |
| 
 | |
| static long gethugepagesize(const char *path)
 | |
| {
 | |
|     struct statfs fs;
 | |
|     int ret;
 | |
| 
 | |
|     do {
 | |
|         ret = statfs(path, &fs);
 | |
|     } while (ret != 0 && errno == EINTR);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         perror(path);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (fs.f_type != HUGETLBFS_MAGIC)
 | |
|         fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
 | |
| 
 | |
|     return fs.f_bsize;
 | |
| }
 | |
| 
 | |
| static void *file_ram_alloc(RAMBlock *block,
 | |
|                             ram_addr_t memory,
 | |
|                             const char *path)
 | |
| {
 | |
|     char *filename;
 | |
|     void *area;
 | |
|     int fd;
 | |
| #ifdef MAP_POPULATE
 | |
|     int flags;
 | |
| #endif
 | |
|     unsigned long hpagesize;
 | |
| 
 | |
|     hpagesize = gethugepagesize(path);
 | |
|     if (!hpagesize) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (memory < hpagesize) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | |
|         fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     fd = mkstemp(filename);
 | |
|     if (fd < 0) {
 | |
|         perror("unable to create backing store for hugepages");
 | |
|         free(filename);
 | |
|         return NULL;
 | |
|     }
 | |
|     unlink(filename);
 | |
|     free(filename);
 | |
| 
 | |
|     memory = (memory+hpagesize-1) & ~(hpagesize-1);
 | |
| 
 | |
|     /*
 | |
|      * ftruncate is not supported by hugetlbfs in older
 | |
|      * hosts, so don't bother bailing out on errors.
 | |
|      * If anything goes wrong with it under other filesystems,
 | |
|      * mmap will fail.
 | |
|      */
 | |
|     if (ftruncate(fd, memory))
 | |
|         perror("ftruncate");
 | |
| 
 | |
| #ifdef MAP_POPULATE
 | |
|     /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
 | |
|      * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED
 | |
|      * to sidestep this quirk.
 | |
|      */
 | |
|     flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
 | |
|     area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
 | |
| #else
 | |
|     area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
 | |
| #endif
 | |
|     if (area == MAP_FAILED) {
 | |
|         perror("file_ram_alloc: can't mmap RAM pages");
 | |
|         close(fd);
 | |
|         return (NULL);
 | |
|     }
 | |
|     block->fd = fd;
 | |
|     return area;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static ram_addr_t find_ram_offset(ram_addr_t size)
 | |
| {
 | |
|     RAMBlock *block, *next_block;
 | |
|     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 | |
| 
 | |
|     if (QLIST_EMPTY(&ram_list.blocks))
 | |
|         return 0;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         ram_addr_t end, next = RAM_ADDR_MAX;
 | |
| 
 | |
|         end = block->offset + block->length;
 | |
| 
 | |
|         QLIST_FOREACH(next_block, &ram_list.blocks, next) {
 | |
|             if (next_block->offset >= end) {
 | |
|                 next = MIN(next, next_block->offset);
 | |
|             }
 | |
|         }
 | |
|         if (next - end >= size && next - end < mingap) {
 | |
|             offset = end;
 | |
|             mingap = next - end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (offset == RAM_ADDR_MAX) {
 | |
|         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
 | |
|                 (uint64_t)size);
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return offset;
 | |
| }
 | |
| 
 | |
| static ram_addr_t last_ram_offset(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t last = 0;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next)
 | |
|         last = MAX(last, block->offset + block->length);
 | |
| 
 | |
|     return last;
 | |
| }
 | |
| 
 | |
| void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
 | |
| {
 | |
|     RAMBlock *new_block, *block;
 | |
| 
 | |
|     new_block = NULL;
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (block->offset == addr) {
 | |
|             new_block = block;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     assert(new_block);
 | |
|     assert(!new_block->idstr[0]);
 | |
| 
 | |
|     if (dev) {
 | |
|         char *id = qdev_get_dev_path(dev);
 | |
|         if (id) {
 | |
|             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | |
|             g_free(id);
 | |
|         }
 | |
|     }
 | |
|     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
 | |
|             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | |
|                     new_block->idstr);
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 | |
|                                    MemoryRegion *mr)
 | |
| {
 | |
|     RAMBlock *new_block;
 | |
| 
 | |
|     size = TARGET_PAGE_ALIGN(size);
 | |
|     new_block = g_malloc0(sizeof(*new_block));
 | |
| 
 | |
|     new_block->mr = mr;
 | |
|     new_block->offset = find_ram_offset(size);
 | |
|     if (host) {
 | |
|         new_block->host = host;
 | |
|         new_block->flags |= RAM_PREALLOC_MASK;
 | |
|     } else {
 | |
|         if (mem_path) {
 | |
| #if defined (__linux__) && !defined(TARGET_S390X)
 | |
|             new_block->host = file_ram_alloc(new_block, size, mem_path);
 | |
|             if (!new_block->host) {
 | |
|                 new_block->host = qemu_vmalloc(size);
 | |
|                 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
 | |
|             }
 | |
| #else
 | |
|             fprintf(stderr, "-mem-path option unsupported\n");
 | |
|             exit(1);
 | |
| #endif
 | |
|         } else {
 | |
|             if (xen_enabled()) {
 | |
|                 xen_ram_alloc(new_block->offset, size, mr);
 | |
|             } else if (kvm_enabled()) {
 | |
|                 /* some s390/kvm configurations have special constraints */
 | |
|                 new_block->host = kvm_vmalloc(size);
 | |
|             } else {
 | |
|                 new_block->host = qemu_vmalloc(size);
 | |
|             }
 | |
|             qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
 | |
|         }
 | |
|     }
 | |
|     new_block->length = size;
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
 | |
| 
 | |
|     ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
 | |
|                                        last_ram_offset() >> TARGET_PAGE_BITS);
 | |
|     cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
 | |
| 
 | |
|     if (kvm_enabled())
 | |
|         kvm_setup_guest_memory(new_block->host, size);
 | |
| 
 | |
|     return new_block->offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
 | |
| {
 | |
|     return qemu_ram_alloc_from_ptr(size, NULL, mr);
 | |
| }
 | |
| 
 | |
| void qemu_ram_free_from_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr == block->offset) {
 | |
|             QLIST_REMOVE(block, next);
 | |
|             g_free(block);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void qemu_ram_free(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr == block->offset) {
 | |
|             QLIST_REMOVE(block, next);
 | |
|             if (block->flags & RAM_PREALLOC_MASK) {
 | |
|                 ;
 | |
|             } else if (mem_path) {
 | |
| #if defined (__linux__) && !defined(TARGET_S390X)
 | |
|                 if (block->fd) {
 | |
|                     munmap(block->host, block->length);
 | |
|                     close(block->fd);
 | |
|                 } else {
 | |
|                     qemu_vfree(block->host);
 | |
|                 }
 | |
| #else
 | |
|                 abort();
 | |
| #endif
 | |
|             } else {
 | |
| #if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | |
|                 munmap(block->host, block->length);
 | |
| #else
 | |
|                 if (xen_enabled()) {
 | |
|                     xen_invalidate_map_cache_entry(block->host);
 | |
|                 } else {
 | |
|                     qemu_vfree(block->host);
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
|             g_free(block);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef _WIN32
 | |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
|     int flags;
 | |
|     void *area, *vaddr;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         offset = addr - block->offset;
 | |
|         if (offset < block->length) {
 | |
|             vaddr = block->host + offset;
 | |
|             if (block->flags & RAM_PREALLOC_MASK) {
 | |
|                 ;
 | |
|             } else {
 | |
|                 flags = MAP_FIXED;
 | |
|                 munmap(vaddr, length);
 | |
|                 if (mem_path) {
 | |
| #if defined(__linux__) && !defined(TARGET_S390X)
 | |
|                     if (block->fd) {
 | |
| #ifdef MAP_POPULATE
 | |
|                         flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
 | |
|                             MAP_PRIVATE;
 | |
| #else
 | |
|                         flags |= MAP_PRIVATE;
 | |
| #endif
 | |
|                         area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                     flags, block->fd, offset);
 | |
|                     } else {
 | |
|                         flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | |
|                         area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                     flags, -1, 0);
 | |
|                     }
 | |
| #else
 | |
|                     abort();
 | |
| #endif
 | |
|                 } else {
 | |
| #if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | |
|                     flags |= MAP_SHARED | MAP_ANONYMOUS;
 | |
|                     area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
 | |
|                                 flags, -1, 0);
 | |
| #else
 | |
|                     flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | |
|                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                 flags, -1, 0);
 | |
| #endif
 | |
|                 }
 | |
|                 if (area != vaddr) {
 | |
|                     fprintf(stderr, "Could not remap addr: "
 | |
|                             RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
 | |
|                             length, addr);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* !_WIN32 */
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|    With the exception of the softmmu code in this file, this should
 | |
|    only be used for local memory (e.g. video ram) that the device owns,
 | |
|    and knows it isn't going to access beyond the end of the block.
 | |
| 
 | |
|    It should not be used for general purpose DMA.
 | |
|    Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
 | |
|  */
 | |
| void *qemu_get_ram_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->length) {
 | |
|             /* Move this entry to to start of the list.  */
 | |
|             if (block != QLIST_FIRST(&ram_list.blocks)) {
 | |
|                 QLIST_REMOVE(block, next);
 | |
|                 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
 | |
|             }
 | |
|             if (xen_enabled()) {
 | |
|                 /* We need to check if the requested address is in the RAM
 | |
|                  * because we don't want to map the entire memory in QEMU.
 | |
|                  * In that case just map until the end of the page.
 | |
|                  */
 | |
|                 if (block->offset == 0) {
 | |
|                     return xen_map_cache(addr, 0, 0);
 | |
|                 } else if (block->host == NULL) {
 | |
|                     block->host =
 | |
|                         xen_map_cache(block->offset, block->length, 1);
 | |
|                 }
 | |
|             }
 | |
|             return block->host + (addr - block->offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|  * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
 | |
|  */
 | |
| void *qemu_safe_ram_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->length) {
 | |
|             if (xen_enabled()) {
 | |
|                 /* We need to check if the requested address is in the RAM
 | |
|                  * because we don't want to map the entire memory in QEMU.
 | |
|                  * In that case just map until the end of the page.
 | |
|                  */
 | |
|                 if (block->offset == 0) {
 | |
|                     return xen_map_cache(addr, 0, 0);
 | |
|                 } else if (block->host == NULL) {
 | |
|                     block->host =
 | |
|                         xen_map_cache(block->offset, block->length, 1);
 | |
|                 }
 | |
|             }
 | |
|             return block->host + (addr - block->offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
 | |
|  * but takes a size argument */
 | |
| void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
 | |
| {
 | |
|     if (*size == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
|     if (xen_enabled()) {
 | |
|         return xen_map_cache(addr, *size, 1);
 | |
|     } else {
 | |
|         RAMBlock *block;
 | |
| 
 | |
|         QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|             if (addr - block->offset < block->length) {
 | |
|                 if (addr - block->offset + *size > block->length)
 | |
|                     *size = block->length - addr + block->offset;
 | |
|                 return block->host + (addr - block->offset);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void qemu_put_ram_ptr(void *addr)
 | |
| {
 | |
|     trace_qemu_put_ram_ptr(addr);
 | |
| }
 | |
| 
 | |
| int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint8_t *host = ptr;
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         *ram_addr = xen_ram_addr_from_mapcache(ptr);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         /* This case append when the block is not mapped. */
 | |
|         if (block->host == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         if (host - block->host < block->length) {
 | |
|             *ram_addr = block->offset + (host - block->host);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /* Some of the softmmu routines need to translate from a host pointer
 | |
|    (typically a TLB entry) back to a ram offset.  */
 | |
| ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
 | |
|         fprintf(stderr, "Bad ram pointer %p\n", ptr);
 | |
|         abort();
 | |
|     }
 | |
|     return ram_addr;
 | |
| }
 | |
| 
 | |
| static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
 | |
|                                     unsigned size)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | |
| #endif
 | |
| #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
 | |
|                                  uint64_t val, unsigned size)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
 | |
| #endif
 | |
| #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps unassigned_mem_ops = {
 | |
|     .read = unassigned_mem_read,
 | |
|     .write = unassigned_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
 | |
|                                unsigned size)
 | |
| {
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| static void error_mem_write(void *opaque, target_phys_addr_t addr,
 | |
|                             uint64_t value, unsigned size)
 | |
| {
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps error_mem_ops = {
 | |
|     .read = error_mem_read,
 | |
|     .write = error_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static const MemoryRegionOps rom_mem_ops = {
 | |
|     .read = error_mem_read,
 | |
|     .write = unassigned_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                uint64_t val, unsigned size)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, size);
 | |
|         dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
| #endif
 | |
|     }
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         stb_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps notdirty_mem_ops = {
 | |
|     .read = error_mem_read,
 | |
|     .write = notdirty_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /* Generate a debug exception if a watchpoint has been hit.  */
 | |
| static void check_watchpoint(int offset, int len_mask, int flags)
 | |
| {
 | |
|     CPUArchState *env = cpu_single_env;
 | |
|     target_ulong pc, cs_base;
 | |
|     TranslationBlock *tb;
 | |
|     target_ulong vaddr;
 | |
|     CPUWatchpoint *wp;
 | |
|     int cpu_flags;
 | |
| 
 | |
|     if (env->watchpoint_hit) {
 | |
|         /* We re-entered the check after replacing the TB. Now raise
 | |
|          * the debug interrupt so that is will trigger after the
 | |
|          * current instruction. */
 | |
|         cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
 | |
|         return;
 | |
|     }
 | |
|     vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if ((vaddr == (wp->vaddr & len_mask) ||
 | |
|              (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
 | |
|             wp->flags |= BP_WATCHPOINT_HIT;
 | |
|             if (!env->watchpoint_hit) {
 | |
|                 env->watchpoint_hit = wp;
 | |
|                 tb = tb_find_pc(env->mem_io_pc);
 | |
|                 if (!tb) {
 | |
|                     cpu_abort(env, "check_watchpoint: could not find TB for "
 | |
|                               "pc=%p", (void *)env->mem_io_pc);
 | |
|                 }
 | |
|                 cpu_restore_state(tb, env, env->mem_io_pc);
 | |
|                 tb_phys_invalidate(tb, -1);
 | |
|                 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 | |
|                     env->exception_index = EXCP_DEBUG;
 | |
|                     cpu_loop_exit(env);
 | |
|                 } else {
 | |
|                     cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
 | |
|                     tb_gen_code(env, pc, cs_base, cpu_flags, 1);
 | |
|                     cpu_resume_from_signal(env, NULL);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | |
|    so these check for a hit then pass through to the normal out-of-line
 | |
|    phys routines.  */
 | |
| static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
 | |
|                                unsigned size)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
 | |
|     switch (size) {
 | |
|     case 1: return ldub_phys(addr);
 | |
|     case 2: return lduw_phys(addr);
 | |
|     case 4: return ldl_phys(addr);
 | |
|     default: abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void watch_mem_write(void *opaque, target_phys_addr_t addr,
 | |
|                             uint64_t val, unsigned size)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         stb_phys(addr, val);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_phys(addr, val);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_phys(addr, val);
 | |
|         break;
 | |
|     default: abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps watch_mem_ops = {
 | |
|     .read = watch_mem_read,
 | |
|     .write = watch_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
 | |
|                              unsigned len)
 | |
| {
 | |
|     subpage_t *mmio = opaque;
 | |
|     unsigned int idx = SUBPAGE_IDX(addr);
 | |
|     MemoryRegionSection *section;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
 | |
|            mmio, len, addr, idx);
 | |
| #endif
 | |
| 
 | |
|     section = &phys_sections[mmio->sub_section[idx]];
 | |
|     addr += mmio->base;
 | |
|     addr -= section->offset_within_address_space;
 | |
|     addr += section->offset_within_region;
 | |
|     return io_mem_read(section->mr, addr, len);
 | |
| }
 | |
| 
 | |
| static void subpage_write(void *opaque, target_phys_addr_t addr,
 | |
|                           uint64_t value, unsigned len)
 | |
| {
 | |
|     subpage_t *mmio = opaque;
 | |
|     unsigned int idx = SUBPAGE_IDX(addr);
 | |
|     MemoryRegionSection *section;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %d addr " TARGET_FMT_plx
 | |
|            " idx %d value %"PRIx64"\n",
 | |
|            __func__, mmio, len, addr, idx, value);
 | |
| #endif
 | |
| 
 | |
|     section = &phys_sections[mmio->sub_section[idx]];
 | |
|     addr += mmio->base;
 | |
|     addr -= section->offset_within_address_space;
 | |
|     addr += section->offset_within_region;
 | |
|     io_mem_write(section->mr, addr, value, len);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps subpage_ops = {
 | |
|     .read = subpage_read,
 | |
|     .write = subpage_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
 | |
|                                  unsigned size)
 | |
| {
 | |
|     ram_addr_t raddr = addr;
 | |
|     void *ptr = qemu_get_ram_ptr(raddr);
 | |
|     switch (size) {
 | |
|     case 1: return ldub_p(ptr);
 | |
|     case 2: return lduw_p(ptr);
 | |
|     case 4: return ldl_p(ptr);
 | |
|     default: abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
 | |
|                               uint64_t value, unsigned size)
 | |
| {
 | |
|     ram_addr_t raddr = addr;
 | |
|     void *ptr = qemu_get_ram_ptr(raddr);
 | |
|     switch (size) {
 | |
|     case 1: return stb_p(ptr, value);
 | |
|     case 2: return stw_p(ptr, value);
 | |
|     case 4: return stl_p(ptr, value);
 | |
|     default: abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps subpage_ram_ops = {
 | |
|     .read = subpage_ram_read,
 | |
|     .write = subpage_ram_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              uint16_t section)
 | |
| {
 | |
|     int idx, eidx;
 | |
| 
 | |
|     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | |
|         return -1;
 | |
|     idx = SUBPAGE_IDX(start);
 | |
|     eidx = SUBPAGE_IDX(end);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
 | |
|            mmio, start, end, idx, eidx, memory);
 | |
| #endif
 | |
|     if (memory_region_is_ram(phys_sections[section].mr)) {
 | |
|         MemoryRegionSection new_section = phys_sections[section];
 | |
|         new_section.mr = &io_mem_subpage_ram;
 | |
|         section = phys_section_add(&new_section);
 | |
|     }
 | |
|     for (; idx <= eidx; idx++) {
 | |
|         mmio->sub_section[idx] = section;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static subpage_t *subpage_init(target_phys_addr_t base)
 | |
| {
 | |
|     subpage_t *mmio;
 | |
| 
 | |
|     mmio = g_malloc0(sizeof(subpage_t));
 | |
| 
 | |
|     mmio->base = base;
 | |
|     memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
 | |
|                           "subpage", TARGET_PAGE_SIZE);
 | |
|     mmio->iomem.subpage = true;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
 | |
|            mmio, base, TARGET_PAGE_SIZE, subpage_memory);
 | |
| #endif
 | |
|     subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
 | |
| 
 | |
|     return mmio;
 | |
| }
 | |
| 
 | |
| static uint16_t dummy_section(MemoryRegion *mr)
 | |
| {
 | |
|     MemoryRegionSection section = {
 | |
|         .mr = mr,
 | |
|         .offset_within_address_space = 0,
 | |
|         .offset_within_region = 0,
 | |
|         .size = UINT64_MAX,
 | |
|     };
 | |
| 
 | |
|     return phys_section_add(§ion);
 | |
| }
 | |
| 
 | |
| MemoryRegion *iotlb_to_region(target_phys_addr_t index)
 | |
| {
 | |
|     return phys_sections[index & ~TARGET_PAGE_MASK].mr;
 | |
| }
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
 | |
|                           "unassigned", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
 | |
|                           "notdirty", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
 | |
|                           "subpage-ram", UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
 | |
|                           "watch", UINT64_MAX);
 | |
| }
 | |
| 
 | |
| static void core_begin(MemoryListener *listener)
 | |
| {
 | |
|     destroy_all_mappings();
 | |
|     phys_sections_clear();
 | |
|     phys_map.ptr = PHYS_MAP_NODE_NIL;
 | |
|     phys_section_unassigned = dummy_section(&io_mem_unassigned);
 | |
|     phys_section_notdirty = dummy_section(&io_mem_notdirty);
 | |
|     phys_section_rom = dummy_section(&io_mem_rom);
 | |
|     phys_section_watch = dummy_section(&io_mem_watch);
 | |
| }
 | |
| 
 | |
| static void core_commit(MemoryListener *listener)
 | |
| {
 | |
|     CPUArchState *env;
 | |
| 
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     /* XXX: slow ! */
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void core_region_add(MemoryListener *listener,
 | |
|                             MemoryRegionSection *section)
 | |
| {
 | |
|     cpu_register_physical_memory_log(section, section->readonly);
 | |
| }
 | |
| 
 | |
| static void core_region_del(MemoryListener *listener,
 | |
|                             MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void core_region_nop(MemoryListener *listener,
 | |
|                             MemoryRegionSection *section)
 | |
| {
 | |
|     cpu_register_physical_memory_log(section, section->readonly);
 | |
| }
 | |
| 
 | |
| static void core_log_start(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void core_log_stop(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void core_log_sync(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void core_log_global_start(MemoryListener *listener)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_tracking(1);
 | |
| }
 | |
| 
 | |
| static void core_log_global_stop(MemoryListener *listener)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_tracking(0);
 | |
| }
 | |
| 
 | |
| static void core_eventfd_add(MemoryListener *listener,
 | |
|                              MemoryRegionSection *section,
 | |
|                              bool match_data, uint64_t data, EventNotifier *e)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void core_eventfd_del(MemoryListener *listener,
 | |
|                              MemoryRegionSection *section,
 | |
|                              bool match_data, uint64_t data, EventNotifier *e)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_begin(MemoryListener *listener)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_commit(MemoryListener *listener)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_region_add(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
|     MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
 | |
| 
 | |
|     mrio->mr = section->mr;
 | |
|     mrio->offset = section->offset_within_region;
 | |
|     iorange_init(&mrio->iorange, &memory_region_iorange_ops,
 | |
|                  section->offset_within_address_space, section->size);
 | |
|     ioport_register(&mrio->iorange);
 | |
| }
 | |
| 
 | |
| static void io_region_del(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
|     isa_unassign_ioport(section->offset_within_address_space, section->size);
 | |
| }
 | |
| 
 | |
| static void io_region_nop(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_log_start(MemoryListener *listener,
 | |
|                          MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_log_stop(MemoryListener *listener,
 | |
|                         MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_log_sync(MemoryListener *listener,
 | |
|                         MemoryRegionSection *section)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_log_global_start(MemoryListener *listener)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_log_global_stop(MemoryListener *listener)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_eventfd_add(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section,
 | |
|                            bool match_data, uint64_t data, EventNotifier *e)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void io_eventfd_del(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section,
 | |
|                            bool match_data, uint64_t data, EventNotifier *e)
 | |
| {
 | |
| }
 | |
| 
 | |
| static MemoryListener core_memory_listener = {
 | |
|     .begin = core_begin,
 | |
|     .commit = core_commit,
 | |
|     .region_add = core_region_add,
 | |
|     .region_del = core_region_del,
 | |
|     .region_nop = core_region_nop,
 | |
|     .log_start = core_log_start,
 | |
|     .log_stop = core_log_stop,
 | |
|     .log_sync = core_log_sync,
 | |
|     .log_global_start = core_log_global_start,
 | |
|     .log_global_stop = core_log_global_stop,
 | |
|     .eventfd_add = core_eventfd_add,
 | |
|     .eventfd_del = core_eventfd_del,
 | |
|     .priority = 0,
 | |
| };
 | |
| 
 | |
| static MemoryListener io_memory_listener = {
 | |
|     .begin = io_begin,
 | |
|     .commit = io_commit,
 | |
|     .region_add = io_region_add,
 | |
|     .region_del = io_region_del,
 | |
|     .region_nop = io_region_nop,
 | |
|     .log_start = io_log_start,
 | |
|     .log_stop = io_log_stop,
 | |
|     .log_sync = io_log_sync,
 | |
|     .log_global_start = io_log_global_start,
 | |
|     .log_global_stop = io_log_global_stop,
 | |
|     .eventfd_add = io_eventfd_add,
 | |
|     .eventfd_del = io_eventfd_del,
 | |
|     .priority = 0,
 | |
| };
 | |
| 
 | |
| static void memory_map_init(void)
 | |
| {
 | |
|     system_memory = g_malloc(sizeof(*system_memory));
 | |
|     memory_region_init(system_memory, "system", INT64_MAX);
 | |
|     set_system_memory_map(system_memory);
 | |
| 
 | |
|     system_io = g_malloc(sizeof(*system_io));
 | |
|     memory_region_init(system_io, "io", 65536);
 | |
|     set_system_io_map(system_io);
 | |
| 
 | |
|     memory_listener_register(&core_memory_listener, system_memory);
 | |
|     memory_listener_register(&io_memory_listener, system_io);
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_memory(void)
 | |
| {
 | |
|     return system_memory;
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_io(void)
 | |
| {
 | |
|     return system_io;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* physical memory access (slow version, mainly for debug) */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l, flags;
 | |
|     target_ulong page;
 | |
|     void * p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         flags = page_get_flags(page);
 | |
|         if (!(flags & PAGE_VALID))
 | |
|             return -1;
 | |
|         if (is_write) {
 | |
|             if (!(flags & PAGE_WRITE))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | |
|                 return -1;
 | |
|             memcpy(p, buf, l);
 | |
|             unlock_user(p, addr, l);
 | |
|         } else {
 | |
|             if (!(flags & PAGE_READ))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | |
|                 return -1;
 | |
|             memcpy(buf, p, l);
 | |
|             unlock_user(p, addr, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     target_phys_addr_t page;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         section = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
| 
 | |
|         if (is_write) {
 | |
|             if (!memory_region_is_ram(section->mr)) {
 | |
|                 target_phys_addr_t addr1;
 | |
|                 addr1 = memory_region_section_addr(section, addr);
 | |
|                 /* XXX: could force cpu_single_env to NULL to avoid
 | |
|                    potential bugs */
 | |
|                 if (l >= 4 && ((addr1 & 3) == 0)) {
 | |
|                     /* 32 bit write access */
 | |
|                     val = ldl_p(buf);
 | |
|                     io_mem_write(section->mr, addr1, val, 4);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | |
|                     /* 16 bit write access */
 | |
|                     val = lduw_p(buf);
 | |
|                     io_mem_write(section->mr, addr1, val, 2);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit write access */
 | |
|                     val = ldub_p(buf);
 | |
|                     io_mem_write(section->mr, addr1, val, 1);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else if (!section->readonly) {
 | |
|                 ram_addr_t addr1;
 | |
|                 addr1 = memory_region_get_ram_addr(section->mr)
 | |
|                     + memory_region_section_addr(section, addr);
 | |
|                 /* RAM case */
 | |
|                 ptr = qemu_get_ram_ptr(addr1);
 | |
|                 memcpy(ptr, buf, l);
 | |
|                 if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                     /* invalidate code */
 | |
|                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
 | |
|                     /* set dirty bit */
 | |
|                     cpu_physical_memory_set_dirty_flags(
 | |
|                         addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|                 }
 | |
|                 qemu_put_ram_ptr(ptr);
 | |
|             }
 | |
|         } else {
 | |
|             if (!(memory_region_is_ram(section->mr) ||
 | |
|                   memory_region_is_romd(section->mr))) {
 | |
|                 target_phys_addr_t addr1;
 | |
|                 /* I/O case */
 | |
|                 addr1 = memory_region_section_addr(section, addr);
 | |
|                 if (l >= 4 && ((addr1 & 3) == 0)) {
 | |
|                     /* 32 bit read access */
 | |
|                     val = io_mem_read(section->mr, addr1, 4);
 | |
|                     stl_p(buf, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | |
|                     /* 16 bit read access */
 | |
|                     val = io_mem_read(section->mr, addr1, 2);
 | |
|                     stw_p(buf, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit read access */
 | |
|                     val = io_mem_read(section->mr, addr1, 1);
 | |
|                     stb_p(buf, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* RAM case */
 | |
|                 ptr = qemu_get_ram_ptr(section->mr->ram_addr
 | |
|                                        + memory_region_section_addr(section,
 | |
|                                                                     addr));
 | |
|                 memcpy(buf, ptr, l);
 | |
|                 qemu_put_ram_ptr(ptr);
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| void cpu_physical_memory_write_rom(target_phys_addr_t addr,
 | |
|                                    const uint8_t *buf, int len)
 | |
| {
 | |
|     int l;
 | |
|     uint8_t *ptr;
 | |
|     target_phys_addr_t page;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         section = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
| 
 | |
|         if (!(memory_region_is_ram(section->mr) ||
 | |
|               memory_region_is_romd(section->mr))) {
 | |
|             /* do nothing */
 | |
|         } else {
 | |
|             unsigned long addr1;
 | |
|             addr1 = memory_region_get_ram_addr(section->mr)
 | |
|                 + memory_region_section_addr(section, addr);
 | |
|             /* ROM/RAM case */
 | |
|             ptr = qemu_get_ram_ptr(addr1);
 | |
|             memcpy(ptr, buf, l);
 | |
|             qemu_put_ram_ptr(ptr);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     void *buffer;
 | |
|     target_phys_addr_t addr;
 | |
|     target_phys_addr_t len;
 | |
| } BounceBuffer;
 | |
| 
 | |
| static BounceBuffer bounce;
 | |
| 
 | |
| typedef struct MapClient {
 | |
|     void *opaque;
 | |
|     void (*callback)(void *opaque);
 | |
|     QLIST_ENTRY(MapClient) link;
 | |
| } MapClient;
 | |
| 
 | |
| static QLIST_HEAD(map_client_list, MapClient) map_client_list
 | |
|     = QLIST_HEAD_INITIALIZER(map_client_list);
 | |
| 
 | |
| void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
 | |
| {
 | |
|     MapClient *client = g_malloc(sizeof(*client));
 | |
| 
 | |
|     client->opaque = opaque;
 | |
|     client->callback = callback;
 | |
|     QLIST_INSERT_HEAD(&map_client_list, client, link);
 | |
|     return client;
 | |
| }
 | |
| 
 | |
| void cpu_unregister_map_client(void *_client)
 | |
| {
 | |
|     MapClient *client = (MapClient *)_client;
 | |
| 
 | |
|     QLIST_REMOVE(client, link);
 | |
|     g_free(client);
 | |
| }
 | |
| 
 | |
| static void cpu_notify_map_clients(void)
 | |
| {
 | |
|     MapClient *client;
 | |
| 
 | |
|     while (!QLIST_EMPTY(&map_client_list)) {
 | |
|         client = QLIST_FIRST(&map_client_list);
 | |
|         client->callback(client->opaque);
 | |
|         cpu_unregister_map_client(client);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Map a physical memory region into a host virtual address.
 | |
|  * May map a subset of the requested range, given by and returned in *plen.
 | |
|  * May return NULL if resources needed to perform the mapping are exhausted.
 | |
|  * Use only for reads OR writes - not for read-modify-write operations.
 | |
|  * Use cpu_register_map_client() to know when retrying the map operation is
 | |
|  * likely to succeed.
 | |
|  */
 | |
| void *cpu_physical_memory_map(target_phys_addr_t addr,
 | |
|                               target_phys_addr_t *plen,
 | |
|                               int is_write)
 | |
| {
 | |
|     target_phys_addr_t len = *plen;
 | |
|     target_phys_addr_t todo = 0;
 | |
|     int l;
 | |
|     target_phys_addr_t page;
 | |
|     MemoryRegionSection *section;
 | |
|     ram_addr_t raddr = RAM_ADDR_MAX;
 | |
|     ram_addr_t rlen;
 | |
|     void *ret;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         section = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
| 
 | |
|         if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
 | |
|             if (todo || bounce.buffer) {
 | |
|                 break;
 | |
|             }
 | |
|             bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
 | |
|             bounce.addr = addr;
 | |
|             bounce.len = l;
 | |
|             if (!is_write) {
 | |
|                 cpu_physical_memory_read(addr, bounce.buffer, l);
 | |
|             }
 | |
| 
 | |
|             *plen = l;
 | |
|             return bounce.buffer;
 | |
|         }
 | |
|         if (!todo) {
 | |
|             raddr = memory_region_get_ram_addr(section->mr)
 | |
|                 + memory_region_section_addr(section, addr);
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|         todo += l;
 | |
|     }
 | |
|     rlen = todo;
 | |
|     ret = qemu_ram_ptr_length(raddr, &rlen);
 | |
|     *plen = rlen;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
 | |
|  * Will also mark the memory as dirty if is_write == 1.  access_len gives
 | |
|  * the amount of memory that was actually read or written by the caller.
 | |
|  */
 | |
| void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
 | |
|                                int is_write, target_phys_addr_t access_len)
 | |
| {
 | |
|     if (buffer != bounce.buffer) {
 | |
|         if (is_write) {
 | |
|             ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
 | |
|             while (access_len) {
 | |
|                 unsigned l;
 | |
|                 l = TARGET_PAGE_SIZE;
 | |
|                 if (l > access_len)
 | |
|                     l = access_len;
 | |
|                 if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                     /* invalidate code */
 | |
|                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
 | |
|                     /* set dirty bit */
 | |
|                     cpu_physical_memory_set_dirty_flags(
 | |
|                         addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|                 }
 | |
|                 addr1 += l;
 | |
|                 access_len -= l;
 | |
|             }
 | |
|         }
 | |
|         if (xen_enabled()) {
 | |
|             xen_invalidate_map_cache_entry(buffer);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     if (is_write) {
 | |
|         cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
 | |
|     }
 | |
|     qemu_vfree(bounce.buffer);
 | |
|     bounce.buffer = NULL;
 | |
|     cpu_notify_map_clients();
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
 | |
|                                          enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!(memory_region_is_ram(section->mr) ||
 | |
|           memory_region_is_romd(section->mr))) {
 | |
|         /* I/O case */
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
|         val = io_mem_read(section->mr, addr, 4);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + memory_region_section_addr(section, addr));
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = ldl_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = ldl_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = ldl_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t ldl_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_le_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_be_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
 | |
|                                          enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!(memory_region_is_ram(section->mr) ||
 | |
|           memory_region_is_romd(section->mr))) {
 | |
|         /* I/O case */
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
| 
 | |
|         /* XXX This is broken when device endian != cpu endian.
 | |
|                Fix and add "endian" variable check */
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         val = io_mem_read(section->mr, addr, 4) << 32;
 | |
|         val |= io_mem_read(section->mr, addr + 4, 4);
 | |
| #else
 | |
|         val = io_mem_read(section->mr, addr, 4);
 | |
|         val |= io_mem_read(section->mr, addr + 4, 4) << 32;
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + memory_region_section_addr(section, addr));
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = ldq_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = ldq_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = ldq_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint64_t ldq_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_le_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_be_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t ldub_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     uint8_t val;
 | |
|     cpu_physical_memory_read(addr, &val, 1);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
 | |
|                                           enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!(memory_region_is_ram(section->mr) ||
 | |
|           memory_region_is_romd(section->mr))) {
 | |
|         /* I/O case */
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
|         val = io_mem_read(section->mr, addr, 2);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + memory_region_section_addr(section, addr));
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = lduw_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = lduw_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = lduw_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t lduw_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_le_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_be_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned. The ram page is not masked as dirty
 | |
|    and the code inside is not invalidated. It is useful if the dirty
 | |
|    bits are used to track modified PTEs */
 | |
| void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!memory_region_is_ram(section->mr) || section->readonly) {
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
|         if (memory_region_is_ram(section->mr)) {
 | |
|             section = &phys_sections[phys_section_rom];
 | |
|         }
 | |
|         io_mem_write(section->mr, addr, val, 4);
 | |
|     } else {
 | |
|         unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
 | |
|                                & TARGET_PAGE_MASK)
 | |
|             + memory_region_section_addr(section, addr);
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         stl_p(ptr, val);
 | |
| 
 | |
|         if (unlikely(in_migration)) {
 | |
|             if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                 /* invalidate code */
 | |
|                 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|                 /* set dirty bit */
 | |
|                 cpu_physical_memory_set_dirty_flags(
 | |
|                     addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!memory_region_is_ram(section->mr) || section->readonly) {
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
|         if (memory_region_is_ram(section->mr)) {
 | |
|             section = &phys_sections[phys_section_rom];
 | |
|         }
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         io_mem_write(section->mr, addr, val >> 32, 4);
 | |
|         io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
 | |
| #else
 | |
|         io_mem_write(section->mr, addr, (uint32_t)val, 4);
 | |
|         io_mem_write(section->mr, addr + 4, val >> 32, 4);
 | |
| #endif
 | |
|     } else {
 | |
|         ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | |
|                                 & TARGET_PAGE_MASK)
 | |
|                                + memory_region_section_addr(section, addr));
 | |
|         stq_p(ptr, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
 | |
|                                      enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!memory_region_is_ram(section->mr) || section->readonly) {
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
|         if (memory_region_is_ram(section->mr)) {
 | |
|             section = &phys_sections[phys_section_rom];
 | |
|         }
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #endif
 | |
|         io_mem_write(section->mr, addr, val, 4);
 | |
|     } else {
 | |
|         unsigned long addr1;
 | |
|         addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | |
|             + memory_region_section_addr(section, addr);
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             stl_le_p(ptr, val);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             stl_be_p(ptr, val);
 | |
|             break;
 | |
|         default:
 | |
|             stl_p(ptr, val);
 | |
|             break;
 | |
|         }
 | |
|         if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|             /* invalidate code */
 | |
|             tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|             /* set dirty bit */
 | |
|             cpu_physical_memory_set_dirty_flags(addr1,
 | |
|                 (0xff & ~CODE_DIRTY_FLAG));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stl_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stl_le_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stl_be_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stb_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint8_t v = val;
 | |
|     cpu_physical_memory_write(addr, &v, 1);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
 | |
|                                      enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (!memory_region_is_ram(section->mr) || section->readonly) {
 | |
|         addr = memory_region_section_addr(section, addr);
 | |
|         if (memory_region_is_ram(section->mr)) {
 | |
|             section = &phys_sections[phys_section_rom];
 | |
|         }
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #endif
 | |
|         io_mem_write(section->mr, addr, val, 2);
 | |
|     } else {
 | |
|         unsigned long addr1;
 | |
|         addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | |
|             + memory_region_section_addr(section, addr);
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             stw_le_p(ptr, val);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             stw_be_p(ptr, val);
 | |
|             break;
 | |
|         default:
 | |
|             stw_p(ptr, val);
 | |
|             break;
 | |
|         }
 | |
|         if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|             /* invalidate code */
 | |
|             tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
 | |
|             /* set dirty bit */
 | |
|             cpu_physical_memory_set_dirty_flags(addr1,
 | |
|                 (0xff & ~CODE_DIRTY_FLAG));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stw_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stw_le_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stw_be_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stq_phys(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     val = tswap64(val);
 | |
|     cpu_physical_memory_write(addr, &val, 8);
 | |
| }
 | |
| 
 | |
| void stq_le_phys(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     val = cpu_to_le64(val);
 | |
|     cpu_physical_memory_write(addr, &val, 8);
 | |
| }
 | |
| 
 | |
| void stq_be_phys(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     val = cpu_to_be64(val);
 | |
|     cpu_physical_memory_write(addr, &val, 8);
 | |
| }
 | |
| 
 | |
| /* virtual memory access for debug (includes writing to ROM) */
 | |
| int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     target_phys_addr_t phys_addr;
 | |
|     target_ulong page;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_debug(env, page);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         phys_addr += (addr & ~TARGET_PAGE_MASK);
 | |
|         if (is_write)
 | |
|             cpu_physical_memory_write_rom(phys_addr, buf, l);
 | |
|         else
 | |
|             cpu_physical_memory_rw(phys_addr, buf, l, is_write);
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* in deterministic execution mode, instructions doing device I/Os
 | |
|    must be at the end of the TB */
 | |
| void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint32_t n, cflags;
 | |
|     target_ulong pc, cs_base;
 | |
|     uint64_t flags;
 | |
| 
 | |
|     tb = tb_find_pc(retaddr);
 | |
|     if (!tb) {
 | |
|         cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
 | |
|                   (void *)retaddr);
 | |
|     }
 | |
|     n = env->icount_decr.u16.low + tb->icount;
 | |
|     cpu_restore_state(tb, env, retaddr);
 | |
|     /* Calculate how many instructions had been executed before the fault
 | |
|        occurred.  */
 | |
|     n = n - env->icount_decr.u16.low;
 | |
|     /* Generate a new TB ending on the I/O insn.  */
 | |
|     n++;
 | |
|     /* On MIPS and SH, delay slot instructions can only be restarted if
 | |
|        they were already the first instruction in the TB.  If this is not
 | |
|        the first instruction in a TB then re-execute the preceding
 | |
|        branch.  */
 | |
| #if defined(TARGET_MIPS)
 | |
|     if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
 | |
|         env->active_tc.PC -= 4;
 | |
|         env->icount_decr.u16.low++;
 | |
|         env->hflags &= ~MIPS_HFLAG_BMASK;
 | |
|     }
 | |
| #elif defined(TARGET_SH4)
 | |
|     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
 | |
|             && n > 1) {
 | |
|         env->pc -= 2;
 | |
|         env->icount_decr.u16.low++;
 | |
|         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
 | |
|     }
 | |
| #endif
 | |
|     /* This should never happen.  */
 | |
|     if (n > CF_COUNT_MASK)
 | |
|         cpu_abort(env, "TB too big during recompile");
 | |
| 
 | |
|     cflags = n | CF_LAST_IO;
 | |
|     pc = tb->pc;
 | |
|     cs_base = tb->cs_base;
 | |
|     flags = tb->flags;
 | |
|     tb_phys_invalidate(tb, -1);
 | |
|     /* FIXME: In theory this could raise an exception.  In practice
 | |
|        we have already translated the block once so it's probably ok.  */
 | |
|     tb_gen_code(env, pc, cs_base, flags, cflags);
 | |
|     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
 | |
|        the first in the TB) then we end up generating a whole new TB and
 | |
|        repeating the fault, which is horribly inefficient.
 | |
|        Better would be to execute just this insn uncached, or generate a
 | |
|        second new TB.  */
 | |
|     cpu_resume_from_signal(env, NULL);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     int i, target_code_size, max_target_code_size;
 | |
|     int direct_jmp_count, direct_jmp2_count, cross_page;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     target_code_size = 0;
 | |
|     max_target_code_size = 0;
 | |
|     cross_page = 0;
 | |
|     direct_jmp_count = 0;
 | |
|     direct_jmp2_count = 0;
 | |
|     for(i = 0; i < nb_tbs; i++) {
 | |
|         tb = &tbs[i];
 | |
|         target_code_size += tb->size;
 | |
|         if (tb->size > max_target_code_size)
 | |
|             max_target_code_size = tb->size;
 | |
|         if (tb->page_addr[1] != -1)
 | |
|             cross_page++;
 | |
|         if (tb->tb_next_offset[0] != 0xffff) {
 | |
|             direct_jmp_count++;
 | |
|             if (tb->tb_next_offset[1] != 0xffff) {
 | |
|                 direct_jmp2_count++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* XXX: avoid using doubles ? */
 | |
|     cpu_fprintf(f, "Translation buffer state:\n");
 | |
|     cpu_fprintf(f, "gen code size       %td/%ld\n",
 | |
|                 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
 | |
|     cpu_fprintf(f, "TB count            %d/%d\n", 
 | |
|                 nb_tbs, code_gen_max_blocks);
 | |
|     cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
 | |
|                 nb_tbs ? target_code_size / nb_tbs : 0,
 | |
|                 max_target_code_size);
 | |
|     cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
 | |
|                 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
 | |
|                 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
 | |
|     cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
 | |
|             cross_page,
 | |
|             nb_tbs ? (cross_page * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
 | |
|                 direct_jmp_count,
 | |
|                 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
 | |
|                 direct_jmp2_count,
 | |
|                 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "\nStatistics:\n");
 | |
|     cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
 | |
|     cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
 | |
|     cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
 | |
|     tcg_dump_info(f, cpu_fprintf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A helper function for the _utterly broken_ virtio device model to find out if
 | |
|  * it's running on a big endian machine. Don't do this at home kids!
 | |
|  */
 | |
| bool virtio_is_big_endian(void);
 | |
| bool virtio_is_big_endian(void)
 | |
| {
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|     return true;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
| 
 | |
|     section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     return !(memory_region_is_ram(section->mr) ||
 | |
|              memory_region_is_romd(section->mr));
 | |
| }
 | |
| #endif
 |