This creates a per-page method for checking of alignment. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20240301204110.656742-5-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			3018 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3018 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Common CPU TLB handling
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#include "hw/core/tcg-cpu-ops.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "exec/cputlb.h"
 | 
						|
#include "exec/tb-flush.h"
 | 
						|
#include "exec/memory-internal.h"
 | 
						|
#include "exec/ram_addr.h"
 | 
						|
#include "tcg/tcg.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "exec/log.h"
 | 
						|
#include "exec/helper-proto-common.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
#include "qemu/atomic128.h"
 | 
						|
#include "exec/translate-all.h"
 | 
						|
#include "trace.h"
 | 
						|
#include "tb-hash.h"
 | 
						|
#include "internal-common.h"
 | 
						|
#include "internal-target.h"
 | 
						|
#ifdef CONFIG_PLUGIN
 | 
						|
#include "qemu/plugin-memory.h"
 | 
						|
#endif
 | 
						|
#include "tcg/tcg-ldst.h"
 | 
						|
#include "tcg/oversized-guest.h"
 | 
						|
 | 
						|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
 | 
						|
/* #define DEBUG_TLB */
 | 
						|
/* #define DEBUG_TLB_LOG */
 | 
						|
 | 
						|
#ifdef DEBUG_TLB
 | 
						|
# define DEBUG_TLB_GATE 1
 | 
						|
# ifdef DEBUG_TLB_LOG
 | 
						|
#  define DEBUG_TLB_LOG_GATE 1
 | 
						|
# else
 | 
						|
#  define DEBUG_TLB_LOG_GATE 0
 | 
						|
# endif
 | 
						|
#else
 | 
						|
# define DEBUG_TLB_GATE 0
 | 
						|
# define DEBUG_TLB_LOG_GATE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define tlb_debug(fmt, ...) do { \
 | 
						|
    if (DEBUG_TLB_LOG_GATE) { \
 | 
						|
        qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
 | 
						|
                      ## __VA_ARGS__); \
 | 
						|
    } else if (DEBUG_TLB_GATE) { \
 | 
						|
        fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
 | 
						|
    } \
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define assert_cpu_is_self(cpu) do {                              \
 | 
						|
        if (DEBUG_TLB_GATE) {                                     \
 | 
						|
            g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
 | 
						|
        }                                                         \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* run_on_cpu_data.target_ptr should always be big enough for a
 | 
						|
 * vaddr even on 32 bit builds
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
 | 
						|
 | 
						|
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
 | 
						|
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
 | 
						|
 | 
						|
static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
 | 
						|
{
 | 
						|
    return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
 | 
						|
{
 | 
						|
    return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
 | 
						|
                             size_t max_entries)
 | 
						|
{
 | 
						|
    desc->window_begin_ns = ns;
 | 
						|
    desc->window_max_entries = max_entries;
 | 
						|
}
 | 
						|
 | 
						|
static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
 | 
						|
{
 | 
						|
    CPUJumpCache *jc = cpu->tb_jmp_cache;
 | 
						|
    int i, i0;
 | 
						|
 | 
						|
    if (unlikely(!jc)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    i0 = tb_jmp_cache_hash_page(page_addr);
 | 
						|
    for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
 | 
						|
        qatomic_set(&jc->array[i0 + i].tb, NULL);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
 | 
						|
 * @desc: The CPUTLBDesc portion of the TLB
 | 
						|
 * @fast: The CPUTLBDescFast portion of the same TLB
 | 
						|
 *
 | 
						|
 * Called with tlb_lock_held.
 | 
						|
 *
 | 
						|
 * We have two main constraints when resizing a TLB: (1) we only resize it
 | 
						|
 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
 | 
						|
 * the array or unnecessarily flushing it), which means we do not control how
 | 
						|
 * frequently the resizing can occur; (2) we don't have access to the guest's
 | 
						|
 * future scheduling decisions, and therefore have to decide the magnitude of
 | 
						|
 * the resize based on past observations.
 | 
						|
 *
 | 
						|
 * In general, a memory-hungry process can benefit greatly from an appropriately
 | 
						|
 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
 | 
						|
 * we just have to make the TLB as large as possible; while an oversized TLB
 | 
						|
 * results in minimal TLB miss rates, it also takes longer to be flushed
 | 
						|
 * (flushes can be _very_ frequent), and the reduced locality can also hurt
 | 
						|
 * performance.
 | 
						|
 *
 | 
						|
 * To achieve near-optimal performance for all kinds of workloads, we:
 | 
						|
 *
 | 
						|
 * 1. Aggressively increase the size of the TLB when the use rate of the
 | 
						|
 * TLB being flushed is high, since it is likely that in the near future this
 | 
						|
 * memory-hungry process will execute again, and its memory hungriness will
 | 
						|
 * probably be similar.
 | 
						|
 *
 | 
						|
 * 2. Slowly reduce the size of the TLB as the use rate declines over a
 | 
						|
 * reasonably large time window. The rationale is that if in such a time window
 | 
						|
 * we have not observed a high TLB use rate, it is likely that we won't observe
 | 
						|
 * it in the near future. In that case, once a time window expires we downsize
 | 
						|
 * the TLB to match the maximum use rate observed in the window.
 | 
						|
 *
 | 
						|
 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
 | 
						|
 * since in that range performance is likely near-optimal. Recall that the TLB
 | 
						|
 * is direct mapped, so we want the use rate to be low (or at least not too
 | 
						|
 * high), since otherwise we are likely to have a significant amount of
 | 
						|
 * conflict misses.
 | 
						|
 */
 | 
						|
static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
 | 
						|
                                  int64_t now)
 | 
						|
{
 | 
						|
    size_t old_size = tlb_n_entries(fast);
 | 
						|
    size_t rate;
 | 
						|
    size_t new_size = old_size;
 | 
						|
    int64_t window_len_ms = 100;
 | 
						|
    int64_t window_len_ns = window_len_ms * 1000 * 1000;
 | 
						|
    bool window_expired = now > desc->window_begin_ns + window_len_ns;
 | 
						|
 | 
						|
    if (desc->n_used_entries > desc->window_max_entries) {
 | 
						|
        desc->window_max_entries = desc->n_used_entries;
 | 
						|
    }
 | 
						|
    rate = desc->window_max_entries * 100 / old_size;
 | 
						|
 | 
						|
    if (rate > 70) {
 | 
						|
        new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
 | 
						|
    } else if (rate < 30 && window_expired) {
 | 
						|
        size_t ceil = pow2ceil(desc->window_max_entries);
 | 
						|
        size_t expected_rate = desc->window_max_entries * 100 / ceil;
 | 
						|
 | 
						|
        /*
 | 
						|
         * Avoid undersizing when the max number of entries seen is just below
 | 
						|
         * a pow2. For instance, if max_entries == 1025, the expected use rate
 | 
						|
         * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
 | 
						|
         * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
 | 
						|
         * later. Thus, make sure that the expected use rate remains below 70%.
 | 
						|
         * (and since we double the size, that means the lowest rate we'd
 | 
						|
         * expect to get is 35%, which is still in the 30-70% range where
 | 
						|
         * we consider that the size is appropriate.)
 | 
						|
         */
 | 
						|
        if (expected_rate > 70) {
 | 
						|
            ceil *= 2;
 | 
						|
        }
 | 
						|
        new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_size == old_size) {
 | 
						|
        if (window_expired) {
 | 
						|
            tlb_window_reset(desc, now, desc->n_used_entries);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    g_free(fast->table);
 | 
						|
    g_free(desc->fulltlb);
 | 
						|
 | 
						|
    tlb_window_reset(desc, now, 0);
 | 
						|
    /* desc->n_used_entries is cleared by the caller */
 | 
						|
    fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | 
						|
    fast->table = g_try_new(CPUTLBEntry, new_size);
 | 
						|
    desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
 | 
						|
 | 
						|
    /*
 | 
						|
     * If the allocations fail, try smaller sizes. We just freed some
 | 
						|
     * memory, so going back to half of new_size has a good chance of working.
 | 
						|
     * Increased memory pressure elsewhere in the system might cause the
 | 
						|
     * allocations to fail though, so we progressively reduce the allocation
 | 
						|
     * size, aborting if we cannot even allocate the smallest TLB we support.
 | 
						|
     */
 | 
						|
    while (fast->table == NULL || desc->fulltlb == NULL) {
 | 
						|
        if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
 | 
						|
            error_report("%s: %s", __func__, strerror(errno));
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
        new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
 | 
						|
        fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | 
						|
 | 
						|
        g_free(fast->table);
 | 
						|
        g_free(desc->fulltlb);
 | 
						|
        fast->table = g_try_new(CPUTLBEntry, new_size);
 | 
						|
        desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
 | 
						|
{
 | 
						|
    desc->n_used_entries = 0;
 | 
						|
    desc->large_page_addr = -1;
 | 
						|
    desc->large_page_mask = -1;
 | 
						|
    desc->vindex = 0;
 | 
						|
    memset(fast->table, -1, sizeof_tlb(fast));
 | 
						|
    memset(desc->vtable, -1, sizeof(desc->vtable));
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
 | 
						|
                                        int64_t now)
 | 
						|
{
 | 
						|
    CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
 | 
						|
    CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
 | 
						|
 | 
						|
    tlb_mmu_resize_locked(desc, fast, now);
 | 
						|
    tlb_mmu_flush_locked(desc, fast);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
 | 
						|
{
 | 
						|
    size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
 | 
						|
 | 
						|
    tlb_window_reset(desc, now, 0);
 | 
						|
    desc->n_used_entries = 0;
 | 
						|
    fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
 | 
						|
    fast->table = g_new(CPUTLBEntry, n_entries);
 | 
						|
    desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
 | 
						|
    tlb_mmu_flush_locked(desc, fast);
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
 | 
						|
{
 | 
						|
    cpu->neg.tlb.d[mmu_idx].n_used_entries++;
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
 | 
						|
{
 | 
						|
    cpu->neg.tlb.d[mmu_idx].n_used_entries--;
 | 
						|
}
 | 
						|
 | 
						|
void tlb_init(CPUState *cpu)
 | 
						|
{
 | 
						|
    int64_t now = get_clock_realtime();
 | 
						|
    int i;
 | 
						|
 | 
						|
    qemu_spin_init(&cpu->neg.tlb.c.lock);
 | 
						|
 | 
						|
    /* All tlbs are initialized flushed. */
 | 
						|
    cpu->neg.tlb.c.dirty = 0;
 | 
						|
 | 
						|
    for (i = 0; i < NB_MMU_MODES; i++) {
 | 
						|
        tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_destroy(CPUState *cpu)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    qemu_spin_destroy(&cpu->neg.tlb.c.lock);
 | 
						|
    for (i = 0; i < NB_MMU_MODES; i++) {
 | 
						|
        CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
 | 
						|
        CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
 | 
						|
 | 
						|
        g_free(fast->table);
 | 
						|
        g_free(desc->fulltlb);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* flush_all_helper: run fn across all cpus
 | 
						|
 *
 | 
						|
 * If the wait flag is set then the src cpu's helper will be queued as
 | 
						|
 * "safe" work and the loop exited creating a synchronisation point
 | 
						|
 * where all queued work will be finished before execution starts
 | 
						|
 * again.
 | 
						|
 */
 | 
						|
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 | 
						|
                             run_on_cpu_data d)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        if (cpu != src) {
 | 
						|
            async_run_on_cpu(cpu, fn, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 | 
						|
{
 | 
						|
    uint16_t asked = data.host_int;
 | 
						|
    uint16_t all_dirty, work, to_clean;
 | 
						|
    int64_t now = get_clock_realtime();
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 | 
						|
 | 
						|
    qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | 
						|
 | 
						|
    all_dirty = cpu->neg.tlb.c.dirty;
 | 
						|
    to_clean = asked & all_dirty;
 | 
						|
    all_dirty &= ~to_clean;
 | 
						|
    cpu->neg.tlb.c.dirty = all_dirty;
 | 
						|
 | 
						|
    for (work = to_clean; work != 0; work &= work - 1) {
 | 
						|
        int mmu_idx = ctz32(work);
 | 
						|
        tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | 
						|
 | 
						|
    tcg_flush_jmp_cache(cpu);
 | 
						|
 | 
						|
    if (to_clean == ALL_MMUIDX_BITS) {
 | 
						|
        qatomic_set(&cpu->neg.tlb.c.full_flush_count,
 | 
						|
                    cpu->neg.tlb.c.full_flush_count + 1);
 | 
						|
    } else {
 | 
						|
        qatomic_set(&cpu->neg.tlb.c.part_flush_count,
 | 
						|
                    cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
 | 
						|
        if (to_clean != asked) {
 | 
						|
            qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
 | 
						|
                        cpu->neg.tlb.c.elide_flush_count +
 | 
						|
                        ctpop16(asked & ~to_clean));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 | 
						|
 | 
						|
    if (cpu->created && !qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 | 
						|
                         RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    } else {
 | 
						|
        tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush(CPUState *cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
 | 
						|
                                      vaddr page, vaddr mask)
 | 
						|
{
 | 
						|
    page &= mask;
 | 
						|
    mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
 | 
						|
 | 
						|
    return (page == (tlb_entry->addr_read & mask) ||
 | 
						|
            page == (tlb_addr_write(tlb_entry) & mask) ||
 | 
						|
            page == (tlb_entry->addr_code & mask));
 | 
						|
}
 | 
						|
 | 
						|
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
 | 
						|
{
 | 
						|
    return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_entry_is_empty - return true if the entry is not in use
 | 
						|
 * @te: pointer to CPUTLBEntry
 | 
						|
 */
 | 
						|
static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
 | 
						|
{
 | 
						|
    return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                        vaddr page,
 | 
						|
                                        vaddr mask)
 | 
						|
{
 | 
						|
    if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
 | 
						|
        memset(tlb_entry, -1, sizeof(*tlb_entry));
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
 | 
						|
{
 | 
						|
    return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
 | 
						|
                                            vaddr page,
 | 
						|
                                            vaddr mask)
 | 
						|
{
 | 
						|
    CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
 | 
						|
    int k;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
    for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
        if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
 | 
						|
            tlb_n_used_entries_dec(cpu, mmu_idx);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
 | 
						|
                                              vaddr page)
 | 
						|
{
 | 
						|
    tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
 | 
						|
{
 | 
						|
    vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
 | 
						|
    vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
 | 
						|
 | 
						|
    /* Check if we need to flush due to large pages.  */
 | 
						|
    if ((page & lp_mask) == lp_addr) {
 | 
						|
        tlb_debug("forcing full flush midx %d (%016"
 | 
						|
                  VADDR_PRIx "/%016" VADDR_PRIx ")\n",
 | 
						|
                  midx, lp_addr, lp_mask);
 | 
						|
        tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
 | 
						|
    } else {
 | 
						|
        if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
 | 
						|
            tlb_n_used_entries_dec(cpu, midx);
 | 
						|
        }
 | 
						|
        tlb_flush_vtlb_page_locked(cpu, midx, page);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_flush_page_by_mmuidx_async_0:
 | 
						|
 * @cpu: cpu on which to flush
 | 
						|
 * @addr: page of virtual address to flush
 | 
						|
 * @idxmap: set of mmu_idx to flush
 | 
						|
 *
 | 
						|
 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
 | 
						|
 * at @addr from the tlbs indicated by @idxmap from @cpu.
 | 
						|
 */
 | 
						|
static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
 | 
						|
                                             vaddr addr,
 | 
						|
                                             uint16_t idxmap)
 | 
						|
{
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
 | 
						|
 | 
						|
    qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        if ((idxmap >> mmu_idx) & 1) {
 | 
						|
            tlb_flush_page_locked(cpu, mmu_idx, addr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Discard jump cache entries for any tb which might potentially
 | 
						|
     * overlap the flushed page, which includes the previous.
 | 
						|
     */
 | 
						|
    tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
 | 
						|
    tb_jmp_cache_clear_page(cpu, addr);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_flush_page_by_mmuidx_async_1:
 | 
						|
 * @cpu: cpu on which to flush
 | 
						|
 * @data: encoded addr + idxmap
 | 
						|
 *
 | 
						|
 * Helper for tlb_flush_page_by_mmuidx and friends, called through
 | 
						|
 * async_run_on_cpu.  The idxmap parameter is encoded in the page
 | 
						|
 * offset of the target_ptr field.  This limits the set of mmu_idx
 | 
						|
 * that can be passed via this method.
 | 
						|
 */
 | 
						|
static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
 | 
						|
                                             run_on_cpu_data data)
 | 
						|
{
 | 
						|
    vaddr addr_and_idxmap = data.target_ptr;
 | 
						|
    vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
 | 
						|
    uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    vaddr addr;
 | 
						|
    uint16_t idxmap;
 | 
						|
} TLBFlushPageByMMUIdxData;
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_flush_page_by_mmuidx_async_2:
 | 
						|
 * @cpu: cpu on which to flush
 | 
						|
 * @data: allocated addr + idxmap
 | 
						|
 *
 | 
						|
 * Helper for tlb_flush_page_by_mmuidx and friends, called through
 | 
						|
 * async_run_on_cpu.  The addr+idxmap parameters are stored in a
 | 
						|
 * TLBFlushPageByMMUIdxData structure that has been allocated
 | 
						|
 * specifically for this helper.  Free the structure when done.
 | 
						|
 */
 | 
						|
static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
 | 
						|
                                             run_on_cpu_data data)
 | 
						|
{
 | 
						|
    TLBFlushPageByMMUIdxData *d = data.host_ptr;
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
 | 
						|
    g_free(d);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    if (qemu_cpu_is_self(cpu)) {
 | 
						|
        tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 | 
						|
    } else if (idxmap < TARGET_PAGE_SIZE) {
 | 
						|
        /*
 | 
						|
         * Most targets have only a few mmu_idx.  In the case where
 | 
						|
         * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
 | 
						|
         * allocating memory for this operation.
 | 
						|
         */
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | 
						|
    } else {
 | 
						|
        TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
 | 
						|
 | 
						|
        /* Otherwise allocate a structure, freed by the worker.  */
 | 
						|
        d->addr = addr;
 | 
						|
        d->idxmap = idxmap;
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
 | 
						|
                         RUN_ON_CPU_HOST_PTR(d));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page(CPUState *cpu, vaddr addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
 | 
						|
                                       uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Allocate memory to hold addr+idxmap only when needed.
 | 
						|
     * See tlb_flush_page_by_mmuidx for details.
 | 
						|
     */
 | 
						|
    if (idxmap < TARGET_PAGE_SIZE) {
 | 
						|
        flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | 
						|
    } else {
 | 
						|
        CPUState *dst_cpu;
 | 
						|
 | 
						|
        /* Allocate a separate data block for each destination cpu.  */
 | 
						|
        CPU_FOREACH(dst_cpu) {
 | 
						|
            if (dst_cpu != src_cpu) {
 | 
						|
                TLBFlushPageByMMUIdxData *d
 | 
						|
                    = g_new(TLBFlushPageByMMUIdxData, 1);
 | 
						|
 | 
						|
                d->addr = addr;
 | 
						|
                d->idxmap = idxmap;
 | 
						|
                async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 | 
						|
                                 RUN_ON_CPU_HOST_PTR(d));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                              vaddr addr,
 | 
						|
                                              uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Allocate memory to hold addr+idxmap only when needed.
 | 
						|
     * See tlb_flush_page_by_mmuidx for details.
 | 
						|
     */
 | 
						|
    if (idxmap < TARGET_PAGE_SIZE) {
 | 
						|
        flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | 
						|
        async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | 
						|
                              RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | 
						|
    } else {
 | 
						|
        CPUState *dst_cpu;
 | 
						|
        TLBFlushPageByMMUIdxData *d;
 | 
						|
 | 
						|
        /* Allocate a separate data block for each destination cpu.  */
 | 
						|
        CPU_FOREACH(dst_cpu) {
 | 
						|
            if (dst_cpu != src_cpu) {
 | 
						|
                d = g_new(TLBFlushPageByMMUIdxData, 1);
 | 
						|
                d->addr = addr;
 | 
						|
                d->idxmap = idxmap;
 | 
						|
                async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 | 
						|
                                 RUN_ON_CPU_HOST_PTR(d));
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        d = g_new(TLBFlushPageByMMUIdxData, 1);
 | 
						|
        d->addr = addr;
 | 
						|
        d->idxmap = idxmap;
 | 
						|
        async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
 | 
						|
                              RUN_ON_CPU_HOST_PTR(d));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_range_locked(CPUState *cpu, int midx,
 | 
						|
                                   vaddr addr, vaddr len,
 | 
						|
                                   unsigned bits)
 | 
						|
{
 | 
						|
    CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
 | 
						|
    CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
 | 
						|
    vaddr mask = MAKE_64BIT_MASK(0, bits);
 | 
						|
 | 
						|
    /*
 | 
						|
     * If @bits is smaller than the tlb size, there may be multiple entries
 | 
						|
     * within the TLB; otherwise all addresses that match under @mask hit
 | 
						|
     * the same TLB entry.
 | 
						|
     * TODO: Perhaps allow bits to be a few bits less than the size.
 | 
						|
     * For now, just flush the entire TLB.
 | 
						|
     *
 | 
						|
     * If @len is larger than the tlb size, then it will take longer to
 | 
						|
     * test all of the entries in the TLB than it will to flush it all.
 | 
						|
     */
 | 
						|
    if (mask < f->mask || len > f->mask) {
 | 
						|
        tlb_debug("forcing full flush midx %d ("
 | 
						|
                  "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
 | 
						|
                  midx, addr, mask, len);
 | 
						|
        tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Check if we need to flush due to large pages.
 | 
						|
     * Because large_page_mask contains all 1's from the msb,
 | 
						|
     * we only need to test the end of the range.
 | 
						|
     */
 | 
						|
    if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
 | 
						|
        tlb_debug("forcing full flush midx %d ("
 | 
						|
                  "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
 | 
						|
                  midx, d->large_page_addr, d->large_page_mask);
 | 
						|
        tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
 | 
						|
        vaddr page = addr + i;
 | 
						|
        CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
 | 
						|
 | 
						|
        if (tlb_flush_entry_mask_locked(entry, page, mask)) {
 | 
						|
            tlb_n_used_entries_dec(cpu, midx);
 | 
						|
        }
 | 
						|
        tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    vaddr addr;
 | 
						|
    vaddr len;
 | 
						|
    uint16_t idxmap;
 | 
						|
    uint16_t bits;
 | 
						|
} TLBFlushRangeData;
 | 
						|
 | 
						|
static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
 | 
						|
                                              TLBFlushRangeData d)
 | 
						|
{
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
 | 
						|
              d.addr, d.bits, d.len, d.idxmap);
 | 
						|
 | 
						|
    qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        if ((d.idxmap >> mmu_idx) & 1) {
 | 
						|
            tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | 
						|
 | 
						|
    /*
 | 
						|
     * If the length is larger than the jump cache size, then it will take
 | 
						|
     * longer to clear each entry individually than it will to clear it all.
 | 
						|
     */
 | 
						|
    if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
 | 
						|
        tcg_flush_jmp_cache(cpu);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Discard jump cache entries for any tb which might potentially
 | 
						|
     * overlap the flushed pages, which includes the previous.
 | 
						|
     */
 | 
						|
    d.addr -= TARGET_PAGE_SIZE;
 | 
						|
    for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
 | 
						|
        tb_jmp_cache_clear_page(cpu, d.addr);
 | 
						|
        d.addr += TARGET_PAGE_SIZE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
 | 
						|
                                              run_on_cpu_data data)
 | 
						|
{
 | 
						|
    TLBFlushRangeData *d = data.host_ptr;
 | 
						|
    tlb_flush_range_by_mmuidx_async_0(cpu, *d);
 | 
						|
    g_free(d);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
 | 
						|
                               vaddr len, uint16_t idxmap,
 | 
						|
                               unsigned bits)
 | 
						|
{
 | 
						|
    TLBFlushRangeData d;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If all bits are significant, and len is small,
 | 
						|
     * this devolves to tlb_flush_page.
 | 
						|
     */
 | 
						|
    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | 
						|
        tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* If no page bits are significant, this devolves to tlb_flush. */
 | 
						|
    if (bits < TARGET_PAGE_BITS) {
 | 
						|
        tlb_flush_by_mmuidx(cpu, idxmap);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    d.addr = addr & TARGET_PAGE_MASK;
 | 
						|
    d.len = len;
 | 
						|
    d.idxmap = idxmap;
 | 
						|
    d.bits = bits;
 | 
						|
 | 
						|
    if (qemu_cpu_is_self(cpu)) {
 | 
						|
        tlb_flush_range_by_mmuidx_async_0(cpu, d);
 | 
						|
    } else {
 | 
						|
        /* Otherwise allocate a structure, freed by the worker.  */
 | 
						|
        TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
 | 
						|
                         RUN_ON_CPU_HOST_PTR(p));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
 | 
						|
                                   uint16_t idxmap, unsigned bits)
 | 
						|
{
 | 
						|
    tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
 | 
						|
                                        vaddr addr, vaddr len,
 | 
						|
                                        uint16_t idxmap, unsigned bits)
 | 
						|
{
 | 
						|
    TLBFlushRangeData d;
 | 
						|
    CPUState *dst_cpu;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If all bits are significant, and len is small,
 | 
						|
     * this devolves to tlb_flush_page.
 | 
						|
     */
 | 
						|
    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | 
						|
        tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* If no page bits are significant, this devolves to tlb_flush. */
 | 
						|
    if (bits < TARGET_PAGE_BITS) {
 | 
						|
        tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    d.addr = addr & TARGET_PAGE_MASK;
 | 
						|
    d.len = len;
 | 
						|
    d.idxmap = idxmap;
 | 
						|
    d.bits = bits;
 | 
						|
 | 
						|
    /* Allocate a separate data block for each destination cpu.  */
 | 
						|
    CPU_FOREACH(dst_cpu) {
 | 
						|
        if (dst_cpu != src_cpu) {
 | 
						|
            TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 | 
						|
            async_run_on_cpu(dst_cpu,
 | 
						|
                             tlb_flush_range_by_mmuidx_async_1,
 | 
						|
                             RUN_ON_CPU_HOST_PTR(p));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
 | 
						|
                                            vaddr addr, uint16_t idxmap,
 | 
						|
                                            unsigned bits)
 | 
						|
{
 | 
						|
    tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
 | 
						|
                                       idxmap, bits);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                               vaddr addr,
 | 
						|
                                               vaddr len,
 | 
						|
                                               uint16_t idxmap,
 | 
						|
                                               unsigned bits)
 | 
						|
{
 | 
						|
    TLBFlushRangeData d, *p;
 | 
						|
    CPUState *dst_cpu;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If all bits are significant, and len is small,
 | 
						|
     * this devolves to tlb_flush_page.
 | 
						|
     */
 | 
						|
    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | 
						|
        tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* If no page bits are significant, this devolves to tlb_flush. */
 | 
						|
    if (bits < TARGET_PAGE_BITS) {
 | 
						|
        tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    d.addr = addr & TARGET_PAGE_MASK;
 | 
						|
    d.len = len;
 | 
						|
    d.idxmap = idxmap;
 | 
						|
    d.bits = bits;
 | 
						|
 | 
						|
    /* Allocate a separate data block for each destination cpu.  */
 | 
						|
    CPU_FOREACH(dst_cpu) {
 | 
						|
        if (dst_cpu != src_cpu) {
 | 
						|
            p = g_memdup(&d, sizeof(d));
 | 
						|
            async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
 | 
						|
                             RUN_ON_CPU_HOST_PTR(p));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    p = g_memdup(&d, sizeof(d));
 | 
						|
    async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
 | 
						|
                          RUN_ON_CPU_HOST_PTR(p));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                                   vaddr addr,
 | 
						|
                                                   uint16_t idxmap,
 | 
						|
                                                   unsigned bits)
 | 
						|
{
 | 
						|
    tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
 | 
						|
                                              idxmap, bits);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLBs so that writes to code in the virtual page 'addr'
 | 
						|
   can be detected */
 | 
						|
void tlb_protect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
 | 
						|
                                             TARGET_PAGE_SIZE,
 | 
						|
                                             DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
 | 
						|
   tested for self modifying code */
 | 
						|
void tlb_unprotect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Dirty write flag handling
 | 
						|
 *
 | 
						|
 * When the TCG code writes to a location it looks up the address in
 | 
						|
 * the TLB and uses that data to compute the final address. If any of
 | 
						|
 * the lower bits of the address are set then the slow path is forced.
 | 
						|
 * There are a number of reasons to do this but for normal RAM the
 | 
						|
 * most usual is detecting writes to code regions which may invalidate
 | 
						|
 * generated code.
 | 
						|
 *
 | 
						|
 * Other vCPUs might be reading their TLBs during guest execution, so we update
 | 
						|
 * te->addr_write with qatomic_set. We don't need to worry about this for
 | 
						|
 * oversized guests as MTTCG is disabled for them.
 | 
						|
 *
 | 
						|
 * Called with tlb_c.lock held.
 | 
						|
 */
 | 
						|
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                         uintptr_t start, uintptr_t length)
 | 
						|
{
 | 
						|
    uintptr_t addr = tlb_entry->addr_write;
 | 
						|
 | 
						|
    if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
 | 
						|
                 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
        addr += tlb_entry->addend;
 | 
						|
        if ((addr - start) < length) {
 | 
						|
#if TARGET_LONG_BITS == 32
 | 
						|
            uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
 | 
						|
            ptr_write += HOST_BIG_ENDIAN;
 | 
						|
            qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
 | 
						|
#elif TCG_OVERSIZED_GUEST
 | 
						|
            tlb_entry->addr_write |= TLB_NOTDIRTY;
 | 
						|
#else
 | 
						|
            qatomic_set(&tlb_entry->addr_write,
 | 
						|
                        tlb_entry->addr_write | TLB_NOTDIRTY);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with tlb_c.lock held.
 | 
						|
 * Called only from the vCPU context, i.e. the TLB's owner thread.
 | 
						|
 */
 | 
						|
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
 | 
						|
{
 | 
						|
    *d = *s;
 | 
						|
}
 | 
						|
 | 
						|
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
 | 
						|
 * the target vCPU).
 | 
						|
 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
 | 
						|
 * thing actually updated is the target TLB entry ->addr_write flags.
 | 
						|
 */
 | 
						|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
 | 
						|
{
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        unsigned int i;
 | 
						|
        unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
 | 
						|
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
 | 
						|
                                         start1, length);
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | 
						|
            tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
 | 
						|
                                         start1, length);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                         vaddr addr)
 | 
						|
{
 | 
						|
    if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
 | 
						|
        tlb_entry->addr_write = addr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB corresponding to virtual page vaddr
 | 
						|
   so that it is no longer dirty */
 | 
						|
void tlb_set_dirty(CPUState *cpu, vaddr addr)
 | 
						|
{
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
    qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
 | 
						|
    }
 | 
						|
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        int k;
 | 
						|
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
            tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Our TLB does not support large pages, so remember the area covered by
 | 
						|
   large pages and trigger a full TLB flush if these are invalidated.  */
 | 
						|
static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
 | 
						|
                               vaddr addr, uint64_t size)
 | 
						|
{
 | 
						|
    vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
 | 
						|
    vaddr lp_mask = ~(size - 1);
 | 
						|
 | 
						|
    if (lp_addr == (vaddr)-1) {
 | 
						|
        /* No previous large page.  */
 | 
						|
        lp_addr = addr;
 | 
						|
    } else {
 | 
						|
        /* Extend the existing region to include the new page.
 | 
						|
           This is a compromise between unnecessary flushes and
 | 
						|
           the cost of maintaining a full variable size TLB.  */
 | 
						|
        lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
 | 
						|
        while (((lp_addr ^ addr) & lp_mask) != 0) {
 | 
						|
            lp_mask <<= 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
 | 
						|
    cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
 | 
						|
                                   vaddr address, int flags,
 | 
						|
                                   MMUAccessType access_type, bool enable)
 | 
						|
{
 | 
						|
    if (enable) {
 | 
						|
        address |= flags & TLB_FLAGS_MASK;
 | 
						|
        flags &= TLB_SLOW_FLAGS_MASK;
 | 
						|
        if (flags) {
 | 
						|
            address |= TLB_FORCE_SLOW;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        address = -1;
 | 
						|
        flags = 0;
 | 
						|
    }
 | 
						|
    ent->addr_idx[access_type] = address;
 | 
						|
    full->slow_flags[access_type] = flags;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a new TLB entry. At most one entry for a given virtual address
 | 
						|
 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | 
						|
 * supplied size is only used by tlb_flush_page.
 | 
						|
 *
 | 
						|
 * Called from TCG-generated code, which is under an RCU read-side
 | 
						|
 * critical section.
 | 
						|
 */
 | 
						|
void tlb_set_page_full(CPUState *cpu, int mmu_idx,
 | 
						|
                       vaddr addr, CPUTLBEntryFull *full)
 | 
						|
{
 | 
						|
    CPUTLB *tlb = &cpu->neg.tlb;
 | 
						|
    CPUTLBDesc *desc = &tlb->d[mmu_idx];
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    unsigned int index, read_flags, write_flags;
 | 
						|
    uintptr_t addend;
 | 
						|
    CPUTLBEntry *te, tn;
 | 
						|
    hwaddr iotlb, xlat, sz, paddr_page;
 | 
						|
    vaddr addr_page;
 | 
						|
    int asidx, wp_flags, prot;
 | 
						|
    bool is_ram, is_romd;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    if (full->lg_page_size <= TARGET_PAGE_BITS) {
 | 
						|
        sz = TARGET_PAGE_SIZE;
 | 
						|
    } else {
 | 
						|
        sz = (hwaddr)1 << full->lg_page_size;
 | 
						|
        tlb_add_large_page(cpu, mmu_idx, addr, sz);
 | 
						|
    }
 | 
						|
    addr_page = addr & TARGET_PAGE_MASK;
 | 
						|
    paddr_page = full->phys_addr & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    prot = full->prot;
 | 
						|
    asidx = cpu_asidx_from_attrs(cpu, full->attrs);
 | 
						|
    section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
 | 
						|
                                                &xlat, &sz, full->attrs, &prot);
 | 
						|
    assert(sz >= TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
 | 
						|
              " prot=%x idx=%d\n",
 | 
						|
              addr, full->phys_addr, prot, mmu_idx);
 | 
						|
 | 
						|
    read_flags = full->tlb_fill_flags;
 | 
						|
    if (full->lg_page_size < TARGET_PAGE_BITS) {
 | 
						|
        /* Repeat the MMU check and TLB fill on every access.  */
 | 
						|
        read_flags |= TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    is_ram = memory_region_is_ram(section->mr);
 | 
						|
    is_romd = memory_region_is_romd(section->mr);
 | 
						|
 | 
						|
    if (is_ram || is_romd) {
 | 
						|
        /* RAM and ROMD both have associated host memory. */
 | 
						|
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | 
						|
    } else {
 | 
						|
        /* I/O does not; force the host address to NULL. */
 | 
						|
        addend = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    write_flags = read_flags;
 | 
						|
    if (is_ram) {
 | 
						|
        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
 | 
						|
        assert(!(iotlb & ~TARGET_PAGE_MASK));
 | 
						|
        /*
 | 
						|
         * Computing is_clean is expensive; avoid all that unless
 | 
						|
         * the page is actually writable.
 | 
						|
         */
 | 
						|
        if (prot & PAGE_WRITE) {
 | 
						|
            if (section->readonly) {
 | 
						|
                write_flags |= TLB_DISCARD_WRITE;
 | 
						|
            } else if (cpu_physical_memory_is_clean(iotlb)) {
 | 
						|
                write_flags |= TLB_NOTDIRTY;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* I/O or ROMD */
 | 
						|
        iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
 | 
						|
        /*
 | 
						|
         * Writes to romd devices must go through MMIO to enable write.
 | 
						|
         * Reads to romd devices go through the ram_ptr found above,
 | 
						|
         * but of course reads to I/O must go through MMIO.
 | 
						|
         */
 | 
						|
        write_flags |= TLB_MMIO;
 | 
						|
        if (!is_romd) {
 | 
						|
            read_flags = write_flags;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
 | 
						|
                                              TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    index = tlb_index(cpu, mmu_idx, addr_page);
 | 
						|
    te = tlb_entry(cpu, mmu_idx, addr_page);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Hold the TLB lock for the rest of the function. We could acquire/release
 | 
						|
     * the lock several times in the function, but it is faster to amortize the
 | 
						|
     * acquisition cost by acquiring it just once. Note that this leads to
 | 
						|
     * a longer critical section, but this is not a concern since the TLB lock
 | 
						|
     * is unlikely to be contended.
 | 
						|
     */
 | 
						|
    qemu_spin_lock(&tlb->c.lock);
 | 
						|
 | 
						|
    /* Note that the tlb is no longer clean.  */
 | 
						|
    tlb->c.dirty |= 1 << mmu_idx;
 | 
						|
 | 
						|
    /* Make sure there's no cached translation for the new page.  */
 | 
						|
    tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Only evict the old entry to the victim tlb if it's for a
 | 
						|
     * different page; otherwise just overwrite the stale data.
 | 
						|
     */
 | 
						|
    if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
 | 
						|
        unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
 | 
						|
        CPUTLBEntry *tv = &desc->vtable[vidx];
 | 
						|
 | 
						|
        /* Evict the old entry into the victim tlb.  */
 | 
						|
        copy_tlb_helper_locked(tv, te);
 | 
						|
        desc->vfulltlb[vidx] = desc->fulltlb[index];
 | 
						|
        tlb_n_used_entries_dec(cpu, mmu_idx);
 | 
						|
    }
 | 
						|
 | 
						|
    /* refill the tlb */
 | 
						|
    /*
 | 
						|
     * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
 | 
						|
     * aligned ram_addr_t of the page base of the target RAM.
 | 
						|
     * Otherwise, iotlb contains
 | 
						|
     *  - a physical section number in the lower TARGET_PAGE_BITS
 | 
						|
     *  - the offset within section->mr of the page base (I/O, ROMD) with the
 | 
						|
     *    TARGET_PAGE_BITS masked off.
 | 
						|
     * We subtract addr_page (which is page aligned and thus won't
 | 
						|
     * disturb the low bits) to give an offset which can be added to the
 | 
						|
     * (non-page-aligned) vaddr of the eventual memory access to get
 | 
						|
     * the MemoryRegion offset for the access. Note that the vaddr we
 | 
						|
     * subtract here is that of the page base, and not the same as the
 | 
						|
     * vaddr we add back in io_prepare()/get_page_addr_code().
 | 
						|
     */
 | 
						|
    desc->fulltlb[index] = *full;
 | 
						|
    full = &desc->fulltlb[index];
 | 
						|
    full->xlat_section = iotlb - addr_page;
 | 
						|
    full->phys_addr = paddr_page;
 | 
						|
 | 
						|
    /* Now calculate the new entry */
 | 
						|
    tn.addend = addend - addr_page;
 | 
						|
 | 
						|
    tlb_set_compare(full, &tn, addr_page, read_flags,
 | 
						|
                    MMU_INST_FETCH, prot & PAGE_EXEC);
 | 
						|
 | 
						|
    if (wp_flags & BP_MEM_READ) {
 | 
						|
        read_flags |= TLB_WATCHPOINT;
 | 
						|
    }
 | 
						|
    tlb_set_compare(full, &tn, addr_page, read_flags,
 | 
						|
                    MMU_DATA_LOAD, prot & PAGE_READ);
 | 
						|
 | 
						|
    if (prot & PAGE_WRITE_INV) {
 | 
						|
        write_flags |= TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
    if (wp_flags & BP_MEM_WRITE) {
 | 
						|
        write_flags |= TLB_WATCHPOINT;
 | 
						|
    }
 | 
						|
    tlb_set_compare(full, &tn, addr_page, write_flags,
 | 
						|
                    MMU_DATA_STORE, prot & PAGE_WRITE);
 | 
						|
 | 
						|
    copy_tlb_helper_locked(te, &tn);
 | 
						|
    tlb_n_used_entries_inc(cpu, mmu_idx);
 | 
						|
    qemu_spin_unlock(&tlb->c.lock);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
 | 
						|
                             hwaddr paddr, MemTxAttrs attrs, int prot,
 | 
						|
                             int mmu_idx, uint64_t size)
 | 
						|
{
 | 
						|
    CPUTLBEntryFull full = {
 | 
						|
        .phys_addr = paddr,
 | 
						|
        .attrs = attrs,
 | 
						|
        .prot = prot,
 | 
						|
        .lg_page_size = ctz64(size)
 | 
						|
    };
 | 
						|
 | 
						|
    assert(is_power_of_2(size));
 | 
						|
    tlb_set_page_full(cpu, mmu_idx, addr, &full);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_set_page(CPUState *cpu, vaddr addr,
 | 
						|
                  hwaddr paddr, int prot,
 | 
						|
                  int mmu_idx, uint64_t size)
 | 
						|
{
 | 
						|
    tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
 | 
						|
                            prot, mmu_idx, size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
 | 
						|
 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
 | 
						|
 * be discarded and looked up again (e.g. via tlb_entry()).
 | 
						|
 */
 | 
						|
static void tlb_fill(CPUState *cpu, vaddr addr, int size,
 | 
						|
                     MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    bool ok;
 | 
						|
 | 
						|
    /*
 | 
						|
     * This is not a probe, so only valid return is success; failure
 | 
						|
     * should result in exception + longjmp to the cpu loop.
 | 
						|
     */
 | 
						|
    ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
 | 
						|
                                    access_type, mmu_idx, false, retaddr);
 | 
						|
    assert(ok);
 | 
						|
}
 | 
						|
 | 
						|
static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
 | 
						|
                                        MMUAccessType access_type,
 | 
						|
                                        int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
 | 
						|
                                          mmu_idx, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static MemoryRegionSection *
 | 
						|
io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
 | 
						|
           MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    hwaddr mr_offset;
 | 
						|
 | 
						|
    section = iotlb_to_section(cpu, xlat, attrs);
 | 
						|
    mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
    if (!cpu->neg.can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    *out_offset = mr_offset;
 | 
						|
    return section;
 | 
						|
}
 | 
						|
 | 
						|
static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
 | 
						|
                      unsigned size, MMUAccessType access_type, int mmu_idx,
 | 
						|
                      MemTxResult response, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    if (!cpu->ignore_memory_transaction_failures
 | 
						|
        && cpu->cc->tcg_ops->do_transaction_failed) {
 | 
						|
        hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
 | 
						|
 | 
						|
        cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
 | 
						|
                                                access_type, mmu_idx,
 | 
						|
                                                full->attrs, response, retaddr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if ADDR is present in the victim tlb, and has been copied
 | 
						|
   back to the main tlb.  */
 | 
						|
static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
 | 
						|
                           MMUAccessType access_type, vaddr page)
 | 
						|
{
 | 
						|
    size_t vidx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
    for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
 | 
						|
        CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
 | 
						|
        uint64_t cmp = tlb_read_idx(vtlb, access_type);
 | 
						|
 | 
						|
        if (cmp == page) {
 | 
						|
            /* Found entry in victim tlb, swap tlb and iotlb.  */
 | 
						|
            CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
 | 
						|
 | 
						|
            qemu_spin_lock(&cpu->neg.tlb.c.lock);
 | 
						|
            copy_tlb_helper_locked(&tmptlb, tlb);
 | 
						|
            copy_tlb_helper_locked(tlb, vtlb);
 | 
						|
            copy_tlb_helper_locked(vtlb, &tmptlb);
 | 
						|
            qemu_spin_unlock(&cpu->neg.tlb.c.lock);
 | 
						|
 | 
						|
            CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | 
						|
            CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
 | 
						|
            CPUTLBEntryFull tmpf;
 | 
						|
            tmpf = *f1; *f1 = *f2; *f2 = tmpf;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
 | 
						|
                           CPUTLBEntryFull *full, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
 | 
						|
 | 
						|
    trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
 | 
						|
 | 
						|
    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
 | 
						|
        tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Set both VGA and migration bits for simplicity and to remove
 | 
						|
     * the notdirty callback faster.
 | 
						|
     */
 | 
						|
    cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
 | 
						|
 | 
						|
    /* We remove the notdirty callback only if the code has been flushed. */
 | 
						|
    if (!cpu_physical_memory_is_clean(ram_addr)) {
 | 
						|
        trace_memory_notdirty_set_dirty(mem_vaddr);
 | 
						|
        tlb_set_dirty(cpu, mem_vaddr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int probe_access_internal(CPUState *cpu, vaddr addr,
 | 
						|
                                 int fault_size, MMUAccessType access_type,
 | 
						|
                                 int mmu_idx, bool nonfault,
 | 
						|
                                 void **phost, CPUTLBEntryFull **pfull,
 | 
						|
                                 uintptr_t retaddr, bool check_mem_cbs)
 | 
						|
{
 | 
						|
    uintptr_t index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
    uint64_t tlb_addr = tlb_read_idx(entry, access_type);
 | 
						|
    vaddr page_addr = addr & TARGET_PAGE_MASK;
 | 
						|
    int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
 | 
						|
    bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
 | 
						|
    if (!tlb_hit_page(tlb_addr, page_addr)) {
 | 
						|
        if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
 | 
						|
            if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
 | 
						|
                                            mmu_idx, nonfault, retaddr)) {
 | 
						|
                /* Non-faulting page table read failed.  */
 | 
						|
                *phost = NULL;
 | 
						|
                *pfull = NULL;
 | 
						|
                return TLB_INVALID_MASK;
 | 
						|
            }
 | 
						|
 | 
						|
            /* TLB resize via tlb_fill may have moved the entry.  */
 | 
						|
            index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
            entry = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
 | 
						|
            /*
 | 
						|
             * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
 | 
						|
             * to force the next access through tlb_fill.  We've just
 | 
						|
             * called tlb_fill, so we know that this entry *is* valid.
 | 
						|
             */
 | 
						|
            flags &= ~TLB_INVALID_MASK;
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_read_idx(entry, access_type);
 | 
						|
    }
 | 
						|
    flags &= tlb_addr;
 | 
						|
 | 
						|
    *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | 
						|
    flags |= full->slow_flags[access_type];
 | 
						|
 | 
						|
    /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
 | 
						|
    if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
 | 
						|
        || (access_type != MMU_INST_FETCH && force_mmio)) {
 | 
						|
        *phost = NULL;
 | 
						|
        return TLB_MMIO;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Everything else is RAM. */
 | 
						|
    *phost = (void *)((uintptr_t)addr + entry->addend);
 | 
						|
    return flags;
 | 
						|
}
 | 
						|
 | 
						|
int probe_access_full(CPUArchState *env, vaddr addr, int size,
 | 
						|
                      MMUAccessType access_type, int mmu_idx,
 | 
						|
                      bool nonfault, void **phost, CPUTLBEntryFull **pfull,
 | 
						|
                      uintptr_t retaddr)
 | 
						|
{
 | 
						|
    int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | 
						|
                                      mmu_idx, nonfault, phost, pfull, retaddr,
 | 
						|
                                      true);
 | 
						|
 | 
						|
    /* Handle clean RAM pages.  */
 | 
						|
    if (unlikely(flags & TLB_NOTDIRTY)) {
 | 
						|
        int dirtysize = size == 0 ? 1 : size;
 | 
						|
        notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
 | 
						|
        flags &= ~TLB_NOTDIRTY;
 | 
						|
    }
 | 
						|
 | 
						|
    return flags;
 | 
						|
}
 | 
						|
 | 
						|
int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
 | 
						|
                          MMUAccessType access_type, int mmu_idx,
 | 
						|
                          void **phost, CPUTLBEntryFull **pfull)
 | 
						|
{
 | 
						|
    void *discard_phost;
 | 
						|
    CPUTLBEntryFull *discard_tlb;
 | 
						|
 | 
						|
    /* privately handle users that don't need full results */
 | 
						|
    phost = phost ? phost : &discard_phost;
 | 
						|
    pfull = pfull ? pfull : &discard_tlb;
 | 
						|
 | 
						|
    int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | 
						|
                                      mmu_idx, true, phost, pfull, 0, false);
 | 
						|
 | 
						|
    /* Handle clean RAM pages.  */
 | 
						|
    if (unlikely(flags & TLB_NOTDIRTY)) {
 | 
						|
        int dirtysize = size == 0 ? 1 : size;
 | 
						|
        notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
 | 
						|
        flags &= ~TLB_NOTDIRTY;
 | 
						|
    }
 | 
						|
 | 
						|
    return flags;
 | 
						|
}
 | 
						|
 | 
						|
int probe_access_flags(CPUArchState *env, vaddr addr, int size,
 | 
						|
                       MMUAccessType access_type, int mmu_idx,
 | 
						|
                       bool nonfault, void **phost, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
    int flags;
 | 
						|
 | 
						|
    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | 
						|
 | 
						|
    flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | 
						|
                                  mmu_idx, nonfault, phost, &full, retaddr,
 | 
						|
                                  true);
 | 
						|
 | 
						|
    /* Handle clean RAM pages. */
 | 
						|
    if (unlikely(flags & TLB_NOTDIRTY)) {
 | 
						|
        int dirtysize = size == 0 ? 1 : size;
 | 
						|
        notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
 | 
						|
        flags &= ~TLB_NOTDIRTY;
 | 
						|
    }
 | 
						|
 | 
						|
    return flags;
 | 
						|
}
 | 
						|
 | 
						|
void *probe_access(CPUArchState *env, vaddr addr, int size,
 | 
						|
                   MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
    void *host;
 | 
						|
    int flags;
 | 
						|
 | 
						|
    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | 
						|
 | 
						|
    flags = probe_access_internal(env_cpu(env), addr, size, access_type,
 | 
						|
                                  mmu_idx, false, &host, &full, retaddr,
 | 
						|
                                  true);
 | 
						|
 | 
						|
    /* Per the interface, size == 0 merely faults the access. */
 | 
						|
    if (size == 0) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
 | 
						|
        /* Handle watchpoints.  */
 | 
						|
        if (flags & TLB_WATCHPOINT) {
 | 
						|
            int wp_access = (access_type == MMU_DATA_STORE
 | 
						|
                             ? BP_MEM_WRITE : BP_MEM_READ);
 | 
						|
            cpu_check_watchpoint(env_cpu(env), addr, size,
 | 
						|
                                 full->attrs, wp_access, retaddr);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Handle clean RAM pages.  */
 | 
						|
        if (flags & TLB_NOTDIRTY) {
 | 
						|
            notdirty_write(env_cpu(env), addr, size, full, retaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return host;
 | 
						|
}
 | 
						|
 | 
						|
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
 | 
						|
                        MMUAccessType access_type, int mmu_idx)
 | 
						|
{
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
    void *host;
 | 
						|
    int flags;
 | 
						|
 | 
						|
    flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
 | 
						|
                                  mmu_idx, true, &host, &full, 0, false);
 | 
						|
 | 
						|
    /* No combination of flags are expected by the caller. */
 | 
						|
    return flags ? NULL : host;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a ram_addr_t for the virtual address for execution.
 | 
						|
 *
 | 
						|
 * Return -1 if we can't translate and execute from an entire page
 | 
						|
 * of RAM.  This will force us to execute by loading and translating
 | 
						|
 * one insn at a time, without caching.
 | 
						|
 *
 | 
						|
 * NOTE: This function will trigger an exception if the page is
 | 
						|
 * not executable.
 | 
						|
 */
 | 
						|
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
 | 
						|
                                        void **hostp)
 | 
						|
{
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
    void *p;
 | 
						|
 | 
						|
    (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
 | 
						|
                                cpu_mmu_index(env_cpu(env), true), false,
 | 
						|
                                &p, &full, 0, false);
 | 
						|
    if (p == NULL) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (full->lg_page_size < TARGET_PAGE_BITS) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hostp) {
 | 
						|
        *hostp = p;
 | 
						|
    }
 | 
						|
    return qemu_ram_addr_from_host_nofail(p);
 | 
						|
}
 | 
						|
 | 
						|
/* Load/store with atomicity primitives. */
 | 
						|
#include "ldst_atomicity.c.inc"
 | 
						|
 | 
						|
#ifdef CONFIG_PLUGIN
 | 
						|
/*
 | 
						|
 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
 | 
						|
 * This should be a hot path as we will have just looked this path up
 | 
						|
 * in the softmmu lookup code (or helper). We don't handle re-fills or
 | 
						|
 * checking the victim table. This is purely informational.
 | 
						|
 *
 | 
						|
 * The one corner case is i/o write, which can cause changes to the
 | 
						|
 * address space.  Those changes, and the corresponding tlb flush,
 | 
						|
 * should be delayed until the next TB, so even then this ought not fail.
 | 
						|
 * But check, Just in Case.
 | 
						|
 */
 | 
						|
bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
 | 
						|
                       bool is_store, struct qemu_plugin_hwaddr *data)
 | 
						|
{
 | 
						|
    CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
    uintptr_t index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
    MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | 
						|
    uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
 | 
						|
    if (unlikely(!tlb_hit(tlb_addr, addr))) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | 
						|
    data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
 | 
						|
 | 
						|
    /* We must have an iotlb entry for MMIO */
 | 
						|
    if (tlb_addr & TLB_MMIO) {
 | 
						|
        MemoryRegionSection *section =
 | 
						|
            iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
 | 
						|
                             full->attrs);
 | 
						|
        data->is_io = true;
 | 
						|
        data->mr = section->mr;
 | 
						|
    } else {
 | 
						|
        data->is_io = false;
 | 
						|
        data->mr = NULL;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe for a load/store operation.
 | 
						|
 * Return the host address and into @flags.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct MMULookupPageData {
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
    void *haddr;
 | 
						|
    vaddr addr;
 | 
						|
    int flags;
 | 
						|
    int size;
 | 
						|
} MMULookupPageData;
 | 
						|
 | 
						|
typedef struct MMULookupLocals {
 | 
						|
    MMULookupPageData page[2];
 | 
						|
    MemOp memop;
 | 
						|
    int mmu_idx;
 | 
						|
} MMULookupLocals;
 | 
						|
 | 
						|
/**
 | 
						|
 * mmu_lookup1: translate one page
 | 
						|
 * @cpu: generic cpu state
 | 
						|
 * @data: lookup parameters
 | 
						|
 * @mmu_idx: virtual address context
 | 
						|
 * @access_type: load/store/code
 | 
						|
 * @ra: return address into tcg generated code, or 0
 | 
						|
 *
 | 
						|
 * Resolve the translation for the one page at @data.addr, filling in
 | 
						|
 * the rest of @data with the results.  If the translation fails,
 | 
						|
 * tlb_fill will longjmp out.  Return true if the softmmu tlb for
 | 
						|
 * @mmu_idx may have resized.
 | 
						|
 */
 | 
						|
static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data,
 | 
						|
                        int mmu_idx, MMUAccessType access_type, uintptr_t ra)
 | 
						|
{
 | 
						|
    vaddr addr = data->addr;
 | 
						|
    uintptr_t index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
    uint64_t tlb_addr = tlb_read_idx(entry, access_type);
 | 
						|
    bool maybe_resized = false;
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
    int flags;
 | 
						|
 | 
						|
    /* If the TLB entry is for a different page, reload and try again.  */
 | 
						|
    if (!tlb_hit(tlb_addr, addr)) {
 | 
						|
        if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
 | 
						|
                            addr & TARGET_PAGE_MASK)) {
 | 
						|
            tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra);
 | 
						|
            maybe_resized = true;
 | 
						|
            index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
            entry = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | 
						|
    flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
 | 
						|
    flags |= full->slow_flags[access_type];
 | 
						|
 | 
						|
    data->full = full;
 | 
						|
    data->flags = flags;
 | 
						|
    /* Compute haddr speculatively; depending on flags it might be invalid. */
 | 
						|
    data->haddr = (void *)((uintptr_t)addr + entry->addend);
 | 
						|
 | 
						|
    return maybe_resized;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mmu_watch_or_dirty
 | 
						|
 * @cpu: generic cpu state
 | 
						|
 * @data: lookup parameters
 | 
						|
 * @access_type: load/store/code
 | 
						|
 * @ra: return address into tcg generated code, or 0
 | 
						|
 *
 | 
						|
 * Trigger watchpoints for @data.addr:@data.size;
 | 
						|
 * record writes to protected clean pages.
 | 
						|
 */
 | 
						|
static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
 | 
						|
                               MMUAccessType access_type, uintptr_t ra)
 | 
						|
{
 | 
						|
    CPUTLBEntryFull *full = data->full;
 | 
						|
    vaddr addr = data->addr;
 | 
						|
    int flags = data->flags;
 | 
						|
    int size = data->size;
 | 
						|
 | 
						|
    /* On watchpoint hit, this will longjmp out.  */
 | 
						|
    if (flags & TLB_WATCHPOINT) {
 | 
						|
        int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
 | 
						|
        cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
 | 
						|
        flags &= ~TLB_WATCHPOINT;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Note that notdirty is only set for writes. */
 | 
						|
    if (flags & TLB_NOTDIRTY) {
 | 
						|
        notdirty_write(cpu, addr, size, full, ra);
 | 
						|
        flags &= ~TLB_NOTDIRTY;
 | 
						|
    }
 | 
						|
    data->flags = flags;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mmu_lookup: translate page(s)
 | 
						|
 * @cpu: generic cpu state
 | 
						|
 * @addr: virtual address
 | 
						|
 * @oi: combined mmu_idx and MemOp
 | 
						|
 * @ra: return address into tcg generated code, or 0
 | 
						|
 * @access_type: load/store/code
 | 
						|
 * @l: output result
 | 
						|
 *
 | 
						|
 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
 | 
						|
 * bytes.  Return true if the lookup crosses a page boundary.
 | 
						|
 */
 | 
						|
static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | 
						|
                       uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
 | 
						|
{
 | 
						|
    unsigned a_bits;
 | 
						|
    bool crosspage;
 | 
						|
    int flags;
 | 
						|
 | 
						|
    l->memop = get_memop(oi);
 | 
						|
    l->mmu_idx = get_mmuidx(oi);
 | 
						|
 | 
						|
    tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
 | 
						|
 | 
						|
    /* Handle CPU specific unaligned behaviour */
 | 
						|
    a_bits = get_alignment_bits(l->memop);
 | 
						|
    if (addr & ((1 << a_bits) - 1)) {
 | 
						|
        cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    l->page[0].addr = addr;
 | 
						|
    l->page[0].size = memop_size(l->memop);
 | 
						|
    l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
 | 
						|
    l->page[1].size = 0;
 | 
						|
    crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
 | 
						|
 | 
						|
        flags = l->page[0].flags;
 | 
						|
        if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
 | 
						|
            mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
 | 
						|
        }
 | 
						|
        if (unlikely(flags & TLB_BSWAP)) {
 | 
						|
            l->memop ^= MO_BSWAP;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Finish compute of page crossing. */
 | 
						|
        int size0 = l->page[1].addr - addr;
 | 
						|
        l->page[1].size = l->page[0].size - size0;
 | 
						|
        l->page[0].size = size0;
 | 
						|
 | 
						|
        /*
 | 
						|
         * Lookup both pages, recognizing exceptions from either.  If the
 | 
						|
         * second lookup potentially resized, refresh first CPUTLBEntryFull.
 | 
						|
         */
 | 
						|
        mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
 | 
						|
        if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) {
 | 
						|
            uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
 | 
						|
            l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
 | 
						|
        }
 | 
						|
 | 
						|
        flags = l->page[0].flags | l->page[1].flags;
 | 
						|
        if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
 | 
						|
            mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
 | 
						|
            mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * Since target/sparc is the only user of TLB_BSWAP, and all
 | 
						|
         * Sparc accesses are aligned, any treatment across two pages
 | 
						|
         * would be arbitrary.  Refuse it until there's a use.
 | 
						|
         */
 | 
						|
        tcg_debug_assert((flags & TLB_BSWAP) == 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * This alignment check differs from the one above, in that this is
 | 
						|
     * based on the atomicity of the operation. The intended use case is
 | 
						|
     * the ARM memory type field of each PTE, where access to pages with
 | 
						|
     * Device memory type require alignment.
 | 
						|
     */
 | 
						|
    if (unlikely(flags & TLB_CHECK_ALIGNED)) {
 | 
						|
        MemOp size = l->memop & MO_SIZE;
 | 
						|
 | 
						|
        switch (l->memop & MO_ATOM_MASK) {
 | 
						|
        case MO_ATOM_NONE:
 | 
						|
            size = MO_8;
 | 
						|
            break;
 | 
						|
        case MO_ATOM_IFALIGN_PAIR:
 | 
						|
        case MO_ATOM_WITHIN16_PAIR:
 | 
						|
            size = size ? size - 1 : 0;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (addr & ((1 << size) - 1)) {
 | 
						|
            cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return crosspage;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe for an atomic operation.  Do not allow unaligned operations,
 | 
						|
 * or io operations to proceed.  Return the host address.
 | 
						|
 */
 | 
						|
static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | 
						|
                               int size, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    uintptr_t mmu_idx = get_mmuidx(oi);
 | 
						|
    MemOp mop = get_memop(oi);
 | 
						|
    int a_bits = get_alignment_bits(mop);
 | 
						|
    uintptr_t index;
 | 
						|
    CPUTLBEntry *tlbe;
 | 
						|
    vaddr tlb_addr;
 | 
						|
    void *hostaddr;
 | 
						|
    CPUTLBEntryFull *full;
 | 
						|
 | 
						|
    tcg_debug_assert(mmu_idx < NB_MMU_MODES);
 | 
						|
 | 
						|
    /* Adjust the given return address.  */
 | 
						|
    retaddr -= GETPC_ADJ;
 | 
						|
 | 
						|
    /* Enforce guest required alignment.  */
 | 
						|
    if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
 | 
						|
        /* ??? Maybe indicate atomic op to cpu_unaligned_access */
 | 
						|
        cpu_unaligned_access(cpu, addr, MMU_DATA_STORE,
 | 
						|
                             mmu_idx, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Enforce qemu required alignment.  */
 | 
						|
    if (unlikely(addr & (size - 1))) {
 | 
						|
        /* We get here if guest alignment was not requested,
 | 
						|
           or was not enforced by cpu_unaligned_access above.
 | 
						|
           We might widen the access and emulate, but for now
 | 
						|
           mark an exception and exit the cpu loop.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
    tlbe = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
 | 
						|
    /* Check TLB entry and enforce page permissions.  */
 | 
						|
    tlb_addr = tlb_addr_write(tlbe);
 | 
						|
    if (!tlb_hit(tlb_addr, addr)) {
 | 
						|
        if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
 | 
						|
                            addr & TARGET_PAGE_MASK)) {
 | 
						|
            tlb_fill(cpu, addr, size,
 | 
						|
                     MMU_DATA_STORE, mmu_idx, retaddr);
 | 
						|
            index = tlb_index(cpu, mmu_idx, addr);
 | 
						|
            tlbe = tlb_entry(cpu, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Let the guest notice RMW on a write-only page.
 | 
						|
     * We have just verified that the page is writable.
 | 
						|
     * Subpage lookups may have left TLB_INVALID_MASK set,
 | 
						|
     * but addr_read will only be -1 if PAGE_READ was unset.
 | 
						|
     */
 | 
						|
    if (unlikely(tlbe->addr_read == -1)) {
 | 
						|
        tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
 | 
						|
        /*
 | 
						|
         * Since we don't support reads and writes to different
 | 
						|
         * addresses, and we do have the proper page loaded for
 | 
						|
         * write, this shouldn't ever return.  But just in case,
 | 
						|
         * handle via stop-the-world.
 | 
						|
         */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
    /* Collect tlb flags for read. */
 | 
						|
    tlb_addr |= tlbe->addr_read;
 | 
						|
 | 
						|
    /* Notice an IO access or a needs-MMU-lookup access */
 | 
						|
    if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
 | 
						|
        /* There's really nothing that can be done to
 | 
						|
           support this apart from stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
 | 
						|
    full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
 | 
						|
 | 
						|
    if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
 | 
						|
        notdirty_write(cpu, addr, size, full, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
 | 
						|
        int wp_flags = 0;
 | 
						|
 | 
						|
        if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
 | 
						|
            wp_flags |= BP_MEM_WRITE;
 | 
						|
        }
 | 
						|
        if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
 | 
						|
            wp_flags |= BP_MEM_READ;
 | 
						|
        }
 | 
						|
        if (wp_flags) {
 | 
						|
            cpu_check_watchpoint(cpu, addr, size,
 | 
						|
                                 full->attrs, wp_flags, retaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return hostaddr;
 | 
						|
 | 
						|
 stop_the_world:
 | 
						|
    cpu_loop_exit_atomic(cpu, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load Helpers
 | 
						|
 *
 | 
						|
 * We support two different access types. SOFTMMU_CODE_ACCESS is
 | 
						|
 * specifically for reading instructions from system memory. It is
 | 
						|
 * called by the translation loop and in some helpers where the code
 | 
						|
 * is disassembled. It shouldn't be called directly by guest code.
 | 
						|
 *
 | 
						|
 * For the benefit of TCG generated code, we want to avoid the
 | 
						|
 * complication of ABI-specific return type promotion and always
 | 
						|
 * return a value extended to the register size of the host. This is
 | 
						|
 * tcg_target_long, except in the case of a 32-bit host and 64-bit
 | 
						|
 * data, and for that we always have uint64_t.
 | 
						|
 *
 | 
						|
 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * do_ld_mmio_beN:
 | 
						|
 * @cpu: generic cpu state
 | 
						|
 * @full: page parameters
 | 
						|
 * @ret_be: accumulated data
 | 
						|
 * @addr: virtual address
 | 
						|
 * @size: number of bytes
 | 
						|
 * @mmu_idx: virtual address context
 | 
						|
 * @ra: return address into tcg generated code, or 0
 | 
						|
 * Context: BQL held
 | 
						|
 *
 | 
						|
 * Load @size bytes from @addr, which is memory-mapped i/o.
 | 
						|
 * The bytes are concatenated in big-endian order with @ret_be.
 | 
						|
 */
 | 
						|
static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
 | 
						|
                                uint64_t ret_be, vaddr addr, int size,
 | 
						|
                                int mmu_idx, MMUAccessType type, uintptr_t ra,
 | 
						|
                                MemoryRegion *mr, hwaddr mr_offset)
 | 
						|
{
 | 
						|
    do {
 | 
						|
        MemOp this_mop;
 | 
						|
        unsigned this_size;
 | 
						|
        uint64_t val;
 | 
						|
        MemTxResult r;
 | 
						|
 | 
						|
        /* Read aligned pieces up to 8 bytes. */
 | 
						|
        this_mop = ctz32(size | (int)addr | 8);
 | 
						|
        this_size = 1 << this_mop;
 | 
						|
        this_mop |= MO_BE;
 | 
						|
 | 
						|
        r = memory_region_dispatch_read(mr, mr_offset, &val,
 | 
						|
                                        this_mop, full->attrs);
 | 
						|
        if (unlikely(r != MEMTX_OK)) {
 | 
						|
            io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
 | 
						|
        }
 | 
						|
        if (this_size == 8) {
 | 
						|
            return val;
 | 
						|
        }
 | 
						|
 | 
						|
        ret_be = (ret_be << (this_size * 8)) | val;
 | 
						|
        addr += this_size;
 | 
						|
        mr_offset += this_size;
 | 
						|
        size -= this_size;
 | 
						|
    } while (size);
 | 
						|
 | 
						|
    return ret_be;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
 | 
						|
                               uint64_t ret_be, vaddr addr, int size,
 | 
						|
                               int mmu_idx, MMUAccessType type, uintptr_t ra)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemTxAttrs attrs;
 | 
						|
 | 
						|
    tcg_debug_assert(size > 0 && size <= 8);
 | 
						|
 | 
						|
    attrs = full->attrs;
 | 
						|
    section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | 
						|
    mr = section->mr;
 | 
						|
 | 
						|
    BQL_LOCK_GUARD();
 | 
						|
    return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
 | 
						|
                           type, ra, mr, mr_offset);
 | 
						|
}
 | 
						|
 | 
						|
static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
 | 
						|
                               uint64_t ret_be, vaddr addr, int size,
 | 
						|
                               int mmu_idx, uintptr_t ra)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemTxAttrs attrs;
 | 
						|
    uint64_t a, b;
 | 
						|
 | 
						|
    tcg_debug_assert(size > 8 && size <= 16);
 | 
						|
 | 
						|
    attrs = full->attrs;
 | 
						|
    section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | 
						|
    mr = section->mr;
 | 
						|
 | 
						|
    BQL_LOCK_GUARD();
 | 
						|
    a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
 | 
						|
                        MMU_DATA_LOAD, ra, mr, mr_offset);
 | 
						|
    b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
 | 
						|
                        MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
 | 
						|
    return int128_make128(b, a);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * do_ld_bytes_beN
 | 
						|
 * @p: translation parameters
 | 
						|
 * @ret_be: accumulated data
 | 
						|
 *
 | 
						|
 * Load @p->size bytes from @p->haddr, which is RAM.
 | 
						|
 * The bytes to concatenated in big-endian order with @ret_be.
 | 
						|
 */
 | 
						|
static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
 | 
						|
{
 | 
						|
    uint8_t *haddr = p->haddr;
 | 
						|
    int i, size = p->size;
 | 
						|
 | 
						|
    for (i = 0; i < size; i++) {
 | 
						|
        ret_be = (ret_be << 8) | haddr[i];
 | 
						|
    }
 | 
						|
    return ret_be;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * do_ld_parts_beN
 | 
						|
 * @p: translation parameters
 | 
						|
 * @ret_be: accumulated data
 | 
						|
 *
 | 
						|
 * As do_ld_bytes_beN, but atomically on each aligned part.
 | 
						|
 */
 | 
						|
static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
 | 
						|
{
 | 
						|
    void *haddr = p->haddr;
 | 
						|
    int size = p->size;
 | 
						|
 | 
						|
    do {
 | 
						|
        uint64_t x;
 | 
						|
        int n;
 | 
						|
 | 
						|
        /*
 | 
						|
         * Find minimum of alignment and size.
 | 
						|
         * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
 | 
						|
         * would have only checked the low bits of addr|size once at the start,
 | 
						|
         * but is just as easy.
 | 
						|
         */
 | 
						|
        switch (((uintptr_t)haddr | size) & 7) {
 | 
						|
        case 4:
 | 
						|
            x = cpu_to_be32(load_atomic4(haddr));
 | 
						|
            ret_be = (ret_be << 32) | x;
 | 
						|
            n = 4;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
        case 6:
 | 
						|
            x = cpu_to_be16(load_atomic2(haddr));
 | 
						|
            ret_be = (ret_be << 16) | x;
 | 
						|
            n = 2;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            x = *(uint8_t *)haddr;
 | 
						|
            ret_be = (ret_be << 8) | x;
 | 
						|
            n = 1;
 | 
						|
            break;
 | 
						|
        case 0:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
        haddr += n;
 | 
						|
        size -= n;
 | 
						|
    } while (size != 0);
 | 
						|
    return ret_be;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * do_ld_parts_be4
 | 
						|
 * @p: translation parameters
 | 
						|
 * @ret_be: accumulated data
 | 
						|
 *
 | 
						|
 * As do_ld_bytes_beN, but with one atomic load.
 | 
						|
 * Four aligned bytes are guaranteed to cover the load.
 | 
						|
 */
 | 
						|
static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
 | 
						|
{
 | 
						|
    int o = p->addr & 3;
 | 
						|
    uint32_t x = load_atomic4(p->haddr - o);
 | 
						|
 | 
						|
    x = cpu_to_be32(x);
 | 
						|
    x <<= o * 8;
 | 
						|
    x >>= (4 - p->size) * 8;
 | 
						|
    return (ret_be << (p->size * 8)) | x;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * do_ld_parts_be8
 | 
						|
 * @p: translation parameters
 | 
						|
 * @ret_be: accumulated data
 | 
						|
 *
 | 
						|
 * As do_ld_bytes_beN, but with one atomic load.
 | 
						|
 * Eight aligned bytes are guaranteed to cover the load.
 | 
						|
 */
 | 
						|
static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
 | 
						|
                                MMULookupPageData *p, uint64_t ret_be)
 | 
						|
{
 | 
						|
    int o = p->addr & 7;
 | 
						|
    uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
 | 
						|
 | 
						|
    x = cpu_to_be64(x);
 | 
						|
    x <<= o * 8;
 | 
						|
    x >>= (8 - p->size) * 8;
 | 
						|
    return (ret_be << (p->size * 8)) | x;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * do_ld_parts_be16
 | 
						|
 * @p: translation parameters
 | 
						|
 * @ret_be: accumulated data
 | 
						|
 *
 | 
						|
 * As do_ld_bytes_beN, but with one atomic load.
 | 
						|
 * 16 aligned bytes are guaranteed to cover the load.
 | 
						|
 */
 | 
						|
static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
 | 
						|
                               MMULookupPageData *p, uint64_t ret_be)
 | 
						|
{
 | 
						|
    int o = p->addr & 15;
 | 
						|
    Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
 | 
						|
    int size = p->size;
 | 
						|
 | 
						|
    if (!HOST_BIG_ENDIAN) {
 | 
						|
        y = bswap128(y);
 | 
						|
    }
 | 
						|
    y = int128_lshift(y, o * 8);
 | 
						|
    y = int128_urshift(y, (16 - size) * 8);
 | 
						|
    x = int128_make64(ret_be);
 | 
						|
    x = int128_lshift(x, size * 8);
 | 
						|
    return int128_or(x, y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for the above.
 | 
						|
 */
 | 
						|
static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
 | 
						|
                          uint64_t ret_be, int mmu_idx, MMUAccessType type,
 | 
						|
                          MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    MemOp atom;
 | 
						|
    unsigned tmp, half_size;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
 | 
						|
                              mmu_idx, type, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * It is a given that we cross a page and therefore there is no
 | 
						|
     * atomicity for the load as a whole, but subobjects may need attention.
 | 
						|
     */
 | 
						|
    atom = mop & MO_ATOM_MASK;
 | 
						|
    switch (atom) {
 | 
						|
    case MO_ATOM_SUBALIGN:
 | 
						|
        return do_ld_parts_beN(p, ret_be);
 | 
						|
 | 
						|
    case MO_ATOM_IFALIGN_PAIR:
 | 
						|
    case MO_ATOM_WITHIN16_PAIR:
 | 
						|
        tmp = mop & MO_SIZE;
 | 
						|
        tmp = tmp ? tmp - 1 : 0;
 | 
						|
        half_size = 1 << tmp;
 | 
						|
        if (atom == MO_ATOM_IFALIGN_PAIR
 | 
						|
            ? p->size == half_size
 | 
						|
            : p->size >= half_size) {
 | 
						|
            if (!HAVE_al8_fast && p->size < 4) {
 | 
						|
                return do_ld_whole_be4(p, ret_be);
 | 
						|
            } else {
 | 
						|
                return do_ld_whole_be8(cpu, ra, p, ret_be);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* fall through */
 | 
						|
 | 
						|
    case MO_ATOM_IFALIGN:
 | 
						|
    case MO_ATOM_WITHIN16:
 | 
						|
    case MO_ATOM_NONE:
 | 
						|
        return do_ld_bytes_beN(p, ret_be);
 | 
						|
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for the above, for 8 < size < 16.
 | 
						|
 */
 | 
						|
static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
 | 
						|
                          uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    int size = p->size;
 | 
						|
    uint64_t b;
 | 
						|
    MemOp atom;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * It is a given that we cross a page and therefore there is no
 | 
						|
     * atomicity for the load as a whole, but subobjects may need attention.
 | 
						|
     */
 | 
						|
    atom = mop & MO_ATOM_MASK;
 | 
						|
    switch (atom) {
 | 
						|
    case MO_ATOM_SUBALIGN:
 | 
						|
        p->size = size - 8;
 | 
						|
        a = do_ld_parts_beN(p, a);
 | 
						|
        p->haddr += size - 8;
 | 
						|
        p->size = 8;
 | 
						|
        b = do_ld_parts_beN(p, 0);
 | 
						|
        break;
 | 
						|
 | 
						|
    case MO_ATOM_WITHIN16_PAIR:
 | 
						|
        /* Since size > 8, this is the half that must be atomic. */
 | 
						|
        return do_ld_whole_be16(cpu, ra, p, a);
 | 
						|
 | 
						|
    case MO_ATOM_IFALIGN_PAIR:
 | 
						|
        /*
 | 
						|
         * Since size > 8, both halves are misaligned,
 | 
						|
         * and so neither is atomic.
 | 
						|
         */
 | 
						|
    case MO_ATOM_IFALIGN:
 | 
						|
    case MO_ATOM_WITHIN16:
 | 
						|
    case MO_ATOM_NONE:
 | 
						|
        p->size = size - 8;
 | 
						|
        a = do_ld_bytes_beN(p, a);
 | 
						|
        b = ldq_be_p(p->haddr + size - 8);
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    return int128_make128(b, a);
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | 
						|
                       MMUAccessType type, uintptr_t ra)
 | 
						|
{
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
 | 
						|
    } else {
 | 
						|
        return *(uint8_t *)p->haddr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | 
						|
                        MMUAccessType type, MemOp memop, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint16_t ret;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
 | 
						|
        if ((memop & MO_BSWAP) == MO_LE) {
 | 
						|
            ret = bswap16(ret);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Perform the load host endian, then swap if necessary. */
 | 
						|
        ret = load_atom_2(cpu, ra, p->haddr, memop);
 | 
						|
        if (memop & MO_BSWAP) {
 | 
						|
            ret = bswap16(ret);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | 
						|
                        MMUAccessType type, MemOp memop, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
 | 
						|
        if ((memop & MO_BSWAP) == MO_LE) {
 | 
						|
            ret = bswap32(ret);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Perform the load host endian. */
 | 
						|
        ret = load_atom_4(cpu, ra, p->haddr, memop);
 | 
						|
        if (memop & MO_BSWAP) {
 | 
						|
            ret = bswap32(ret);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
 | 
						|
                        MMUAccessType type, MemOp memop, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint64_t ret;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
 | 
						|
        if ((memop & MO_BSWAP) == MO_LE) {
 | 
						|
            ret = bswap64(ret);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Perform the load host endian. */
 | 
						|
        ret = load_atom_8(cpu, ra, p->haddr, memop);
 | 
						|
        if (memop & MO_BSWAP) {
 | 
						|
            ret = bswap64(ret);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | 
						|
                          uintptr_t ra, MMUAccessType access_type)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | 
						|
    tcg_debug_assert(!crosspage);
 | 
						|
 | 
						|
    return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | 
						|
                           uintptr_t ra, MMUAccessType access_type)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
    uint16_t ret;
 | 
						|
    uint8_t a, b;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
 | 
						|
    b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
 | 
						|
 | 
						|
    if ((l.memop & MO_BSWAP) == MO_LE) {
 | 
						|
        ret = a | (b << 8);
 | 
						|
    } else {
 | 
						|
        ret = b | (a << 8);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | 
						|
                           uintptr_t ra, MMUAccessType access_type)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    if ((l.memop & MO_BSWAP) == MO_LE) {
 | 
						|
        ret = bswap32(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
 | 
						|
                           uintptr_t ra, MMUAccessType access_type)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
    uint64_t ret;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
 | 
						|
    if ((l.memop & MO_BSWAP) == MO_LE) {
 | 
						|
        ret = bswap64(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
    uint64_t a, b;
 | 
						|
    Int128 ret;
 | 
						|
    int first;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        if (unlikely(l.page[0].flags & TLB_MMIO)) {
 | 
						|
            ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
 | 
						|
                                   l.mmu_idx, ra);
 | 
						|
            if ((l.memop & MO_BSWAP) == MO_LE) {
 | 
						|
                ret = bswap128(ret);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            /* Perform the load host endian. */
 | 
						|
            ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
 | 
						|
            if (l.memop & MO_BSWAP) {
 | 
						|
                ret = bswap128(ret);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    first = l.page[0].size;
 | 
						|
    if (first == 8) {
 | 
						|
        MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
 | 
						|
 | 
						|
        a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
 | 
						|
        b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
 | 
						|
        if ((mop8 & MO_BSWAP) == MO_LE) {
 | 
						|
            ret = int128_make128(a, b);
 | 
						|
        } else {
 | 
						|
            ret = int128_make128(b, a);
 | 
						|
        }
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    if (first < 8) {
 | 
						|
        a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
 | 
						|
                      MMU_DATA_LOAD, l.memop, ra);
 | 
						|
        ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
 | 
						|
    } else {
 | 
						|
        ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
 | 
						|
        b = int128_getlo(ret);
 | 
						|
        ret = int128_lshift(ret, l.page[1].size * 8);
 | 
						|
        a = int128_gethi(ret);
 | 
						|
        b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
 | 
						|
                      MMU_DATA_LOAD, l.memop, ra);
 | 
						|
        ret = int128_make128(b, a);
 | 
						|
    }
 | 
						|
    if ((l.memop & MO_BSWAP) == MO_LE) {
 | 
						|
        ret = bswap128(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Store Helpers
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * do_st_mmio_leN:
 | 
						|
 * @cpu: generic cpu state
 | 
						|
 * @full: page parameters
 | 
						|
 * @val_le: data to store
 | 
						|
 * @addr: virtual address
 | 
						|
 * @size: number of bytes
 | 
						|
 * @mmu_idx: virtual address context
 | 
						|
 * @ra: return address into tcg generated code, or 0
 | 
						|
 * Context: BQL held
 | 
						|
 *
 | 
						|
 * Store @size bytes at @addr, which is memory-mapped i/o.
 | 
						|
 * The bytes to store are extracted in little-endian order from @val_le;
 | 
						|
 * return the bytes of @val_le beyond @p->size that have not been stored.
 | 
						|
 */
 | 
						|
static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
 | 
						|
                                uint64_t val_le, vaddr addr, int size,
 | 
						|
                                int mmu_idx, uintptr_t ra,
 | 
						|
                                MemoryRegion *mr, hwaddr mr_offset)
 | 
						|
{
 | 
						|
    do {
 | 
						|
        MemOp this_mop;
 | 
						|
        unsigned this_size;
 | 
						|
        MemTxResult r;
 | 
						|
 | 
						|
        /* Store aligned pieces up to 8 bytes. */
 | 
						|
        this_mop = ctz32(size | (int)addr | 8);
 | 
						|
        this_size = 1 << this_mop;
 | 
						|
        this_mop |= MO_LE;
 | 
						|
 | 
						|
        r = memory_region_dispatch_write(mr, mr_offset, val_le,
 | 
						|
                                         this_mop, full->attrs);
 | 
						|
        if (unlikely(r != MEMTX_OK)) {
 | 
						|
            io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
 | 
						|
                      mmu_idx, r, ra);
 | 
						|
        }
 | 
						|
        if (this_size == 8) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        val_le >>= this_size * 8;
 | 
						|
        addr += this_size;
 | 
						|
        mr_offset += this_size;
 | 
						|
        size -= this_size;
 | 
						|
    } while (size);
 | 
						|
 | 
						|
    return val_le;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
 | 
						|
                               uint64_t val_le, vaddr addr, int size,
 | 
						|
                               int mmu_idx, uintptr_t ra)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    MemTxAttrs attrs;
 | 
						|
 | 
						|
    tcg_debug_assert(size > 0 && size <= 8);
 | 
						|
 | 
						|
    attrs = full->attrs;
 | 
						|
    section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | 
						|
    mr = section->mr;
 | 
						|
 | 
						|
    BQL_LOCK_GUARD();
 | 
						|
    return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
 | 
						|
                           ra, mr, mr_offset);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
 | 
						|
                                 Int128 val_le, vaddr addr, int size,
 | 
						|
                                 int mmu_idx, uintptr_t ra)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemTxAttrs attrs;
 | 
						|
 | 
						|
    tcg_debug_assert(size > 8 && size <= 16);
 | 
						|
 | 
						|
    attrs = full->attrs;
 | 
						|
    section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
 | 
						|
    mr = section->mr;
 | 
						|
 | 
						|
    BQL_LOCK_GUARD();
 | 
						|
    int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
 | 
						|
                    mmu_idx, ra, mr, mr_offset);
 | 
						|
    return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
 | 
						|
                           size - 8, mmu_idx, ra, mr, mr_offset + 8);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for the above.
 | 
						|
 */
 | 
						|
static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
 | 
						|
                          uint64_t val_le, int mmu_idx,
 | 
						|
                          MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    MemOp atom;
 | 
						|
    unsigned tmp, half_size;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
 | 
						|
                              p->size, mmu_idx, ra);
 | 
						|
    } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | 
						|
        return val_le >> (p->size * 8);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * It is a given that we cross a page and therefore there is no atomicity
 | 
						|
     * for the store as a whole, but subobjects may need attention.
 | 
						|
     */
 | 
						|
    atom = mop & MO_ATOM_MASK;
 | 
						|
    switch (atom) {
 | 
						|
    case MO_ATOM_SUBALIGN:
 | 
						|
        return store_parts_leN(p->haddr, p->size, val_le);
 | 
						|
 | 
						|
    case MO_ATOM_IFALIGN_PAIR:
 | 
						|
    case MO_ATOM_WITHIN16_PAIR:
 | 
						|
        tmp = mop & MO_SIZE;
 | 
						|
        tmp = tmp ? tmp - 1 : 0;
 | 
						|
        half_size = 1 << tmp;
 | 
						|
        if (atom == MO_ATOM_IFALIGN_PAIR
 | 
						|
            ? p->size == half_size
 | 
						|
            : p->size >= half_size) {
 | 
						|
            if (!HAVE_al8_fast && p->size <= 4) {
 | 
						|
                return store_whole_le4(p->haddr, p->size, val_le);
 | 
						|
            } else if (HAVE_al8) {
 | 
						|
                return store_whole_le8(p->haddr, p->size, val_le);
 | 
						|
            } else {
 | 
						|
                cpu_loop_exit_atomic(cpu, ra);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* fall through */
 | 
						|
 | 
						|
    case MO_ATOM_IFALIGN:
 | 
						|
    case MO_ATOM_WITHIN16:
 | 
						|
    case MO_ATOM_NONE:
 | 
						|
        return store_bytes_leN(p->haddr, p->size, val_le);
 | 
						|
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper for the above, for 8 < size < 16.
 | 
						|
 */
 | 
						|
static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
 | 
						|
                            Int128 val_le, int mmu_idx,
 | 
						|
                            MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    int size = p->size;
 | 
						|
    MemOp atom;
 | 
						|
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
 | 
						|
                                size, mmu_idx, ra);
 | 
						|
    } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | 
						|
        return int128_gethi(val_le) >> ((size - 8) * 8);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * It is a given that we cross a page and therefore there is no atomicity
 | 
						|
     * for the store as a whole, but subobjects may need attention.
 | 
						|
     */
 | 
						|
    atom = mop & MO_ATOM_MASK;
 | 
						|
    switch (atom) {
 | 
						|
    case MO_ATOM_SUBALIGN:
 | 
						|
        store_parts_leN(p->haddr, 8, int128_getlo(val_le));
 | 
						|
        return store_parts_leN(p->haddr + 8, p->size - 8,
 | 
						|
                               int128_gethi(val_le));
 | 
						|
 | 
						|
    case MO_ATOM_WITHIN16_PAIR:
 | 
						|
        /* Since size > 8, this is the half that must be atomic. */
 | 
						|
        if (!HAVE_CMPXCHG128) {
 | 
						|
            cpu_loop_exit_atomic(cpu, ra);
 | 
						|
        }
 | 
						|
        return store_whole_le16(p->haddr, p->size, val_le);
 | 
						|
 | 
						|
    case MO_ATOM_IFALIGN_PAIR:
 | 
						|
        /*
 | 
						|
         * Since size > 8, both halves are misaligned,
 | 
						|
         * and so neither is atomic.
 | 
						|
         */
 | 
						|
    case MO_ATOM_IFALIGN:
 | 
						|
    case MO_ATOM_WITHIN16:
 | 
						|
    case MO_ATOM_NONE:
 | 
						|
        stq_le_p(p->haddr, int128_getlo(val_le));
 | 
						|
        return store_bytes_leN(p->haddr + 8, p->size - 8,
 | 
						|
                               int128_gethi(val_le));
 | 
						|
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
 | 
						|
                    int mmu_idx, uintptr_t ra)
 | 
						|
{
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
 | 
						|
    } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | 
						|
        /* nothing */
 | 
						|
    } else {
 | 
						|
        *(uint8_t *)p->haddr = val;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
 | 
						|
                    int mmu_idx, MemOp memop, uintptr_t ra)
 | 
						|
{
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        if ((memop & MO_BSWAP) != MO_LE) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
        do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
 | 
						|
    } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | 
						|
        /* nothing */
 | 
						|
    } else {
 | 
						|
        /* Swap to host endian if necessary, then store. */
 | 
						|
        if (memop & MO_BSWAP) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
        store_atom_2(cpu, ra, p->haddr, memop, val);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
 | 
						|
                    int mmu_idx, MemOp memop, uintptr_t ra)
 | 
						|
{
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        if ((memop & MO_BSWAP) != MO_LE) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
        do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
 | 
						|
    } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | 
						|
        /* nothing */
 | 
						|
    } else {
 | 
						|
        /* Swap to host endian if necessary, then store. */
 | 
						|
        if (memop & MO_BSWAP) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
        store_atom_4(cpu, ra, p->haddr, memop, val);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
 | 
						|
                    int mmu_idx, MemOp memop, uintptr_t ra)
 | 
						|
{
 | 
						|
    if (unlikely(p->flags & TLB_MMIO)) {
 | 
						|
        if ((memop & MO_BSWAP) != MO_LE) {
 | 
						|
            val = bswap64(val);
 | 
						|
        }
 | 
						|
        do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
 | 
						|
    } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
 | 
						|
        /* nothing */
 | 
						|
    } else {
 | 
						|
        /* Swap to host endian if necessary, then store. */
 | 
						|
        if (memop & MO_BSWAP) {
 | 
						|
            val = bswap64(val);
 | 
						|
        }
 | 
						|
        store_atom_8(cpu, ra, p->haddr, memop, val);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
 | 
						|
                       MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | 
						|
    tcg_debug_assert(!crosspage);
 | 
						|
 | 
						|
    do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
 | 
						|
                       MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
    uint8_t a, b;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((l.memop & MO_BSWAP) == MO_LE) {
 | 
						|
        a = val, b = val >> 8;
 | 
						|
    } else {
 | 
						|
        b = val, a = val >> 8;
 | 
						|
    }
 | 
						|
    do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
 | 
						|
    do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
 | 
						|
                       MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Swap to little endian for simplicity, then store by bytes. */
 | 
						|
    if ((l.memop & MO_BSWAP) != MO_LE) {
 | 
						|
        val = bswap32(val);
 | 
						|
    }
 | 
						|
    val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | 
						|
    (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
 | 
						|
                       MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Swap to little endian for simplicity, then store by bytes. */
 | 
						|
    if ((l.memop & MO_BSWAP) != MO_LE) {
 | 
						|
        val = bswap64(val);
 | 
						|
    }
 | 
						|
    val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | 
						|
    (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
 | 
						|
                        MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    MMULookupLocals l;
 | 
						|
    bool crosspage;
 | 
						|
    uint64_t a, b;
 | 
						|
    int first;
 | 
						|
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
 | 
						|
    if (likely(!crosspage)) {
 | 
						|
        if (unlikely(l.page[0].flags & TLB_MMIO)) {
 | 
						|
            if ((l.memop & MO_BSWAP) != MO_LE) {
 | 
						|
                val = bswap128(val);
 | 
						|
            }
 | 
						|
            do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
 | 
						|
        } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
 | 
						|
            /* nothing */
 | 
						|
        } else {
 | 
						|
            /* Swap to host endian if necessary, then store. */
 | 
						|
            if (l.memop & MO_BSWAP) {
 | 
						|
                val = bswap128(val);
 | 
						|
            }
 | 
						|
            store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    first = l.page[0].size;
 | 
						|
    if (first == 8) {
 | 
						|
        MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
 | 
						|
 | 
						|
        if (l.memop & MO_BSWAP) {
 | 
						|
            val = bswap128(val);
 | 
						|
        }
 | 
						|
        if (HOST_BIG_ENDIAN) {
 | 
						|
            b = int128_getlo(val), a = int128_gethi(val);
 | 
						|
        } else {
 | 
						|
            a = int128_getlo(val), b = int128_gethi(val);
 | 
						|
        }
 | 
						|
        do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
 | 
						|
        do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((l.memop & MO_BSWAP) != MO_LE) {
 | 
						|
        val = bswap128(val);
 | 
						|
    }
 | 
						|
    if (first < 8) {
 | 
						|
        do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
 | 
						|
        val = int128_urshift(val, first * 8);
 | 
						|
        do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
 | 
						|
    } else {
 | 
						|
        b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
 | 
						|
        do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#include "ldst_common.c.inc"
 | 
						|
 | 
						|
/*
 | 
						|
 * First set of functions passes in OI and RETADDR.
 | 
						|
 * This makes them callable from other helpers.
 | 
						|
 */
 | 
						|
 | 
						|
#define ATOMIC_NAME(X) \
 | 
						|
    glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
 | 
						|
 | 
						|
#define ATOMIC_MMU_CLEANUP
 | 
						|
 | 
						|
#include "atomic_common.c.inc"
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
 | 
						|
#define DATA_SIZE 16
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Code access functions.  */
 | 
						|
 | 
						|
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
 | 
						|
{
 | 
						|
    CPUState *cs = env_cpu(env);
 | 
						|
    MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
 | 
						|
    return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
 | 
						|
{
 | 
						|
    CPUState *cs = env_cpu(env);
 | 
						|
    MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
 | 
						|
    return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
 | 
						|
{
 | 
						|
    CPUState *cs = env_cpu(env);
 | 
						|
    MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
 | 
						|
    return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
 | 
						|
{
 | 
						|
    CPUState *cs = env_cpu(env);
 | 
						|
    MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
 | 
						|
    return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                         MemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
 | 
						|
}
 |