 8063396bf3
			
		
	
	
		8063396bf3
		
	
	
	
	
		
			
			This converts existing DECLARE_INSTANCE_CHECKER usage to OBJECT_DECLARE_SIMPLE_TYPE when possible. $ ./scripts/codeconverter/converter.py -i \ --pattern=AddObjectDeclareSimpleType $(git grep -l '' -- '*.[ch]') Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Acked-by: Paul Durrant <paul@xen.org> Message-Id: <20200916182519.415636-6-ehabkost@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
		
			
				
	
	
		
			986 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			986 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NeXT Cube System Driver
 | |
|  *
 | |
|  * Copyright (c) 2011 Bryce Lanham
 | |
|  *
 | |
|  * This code is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published
 | |
|  * by the Free Software Foundation; either version 2 of the License,
 | |
|  * or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/hwaddr.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "hw/irq.h"
 | |
| #include "hw/m68k/next-cube.h"
 | |
| #include "hw/boards.h"
 | |
| #include "hw/loader.h"
 | |
| #include "hw/scsi/esp.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "qom/object.h"
 | |
| #include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
 | |
| #include "hw/block/fdc.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "qapi/error.h"
 | |
| #include "ui/console.h"
 | |
| #include "target/m68k/cpu.h"
 | |
| 
 | |
| /* #define DEBUG_NEXT */
 | |
| #ifdef DEBUG_NEXT
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
 | |
| OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
 | |
| 
 | |
| #define ENTRY       0x0100001e
 | |
| #define RAM_SIZE    0x4000000
 | |
| #define ROM_FILE    "Rev_2.5_v66.bin"
 | |
| 
 | |
| typedef struct next_dma {
 | |
|     uint32_t csr;
 | |
| 
 | |
|     uint32_t saved_next;
 | |
|     uint32_t saved_limit;
 | |
|     uint32_t saved_start;
 | |
|     uint32_t saved_stop;
 | |
| 
 | |
|     uint32_t next;
 | |
|     uint32_t limit;
 | |
|     uint32_t start;
 | |
|     uint32_t stop;
 | |
| 
 | |
|     uint32_t next_initbuf;
 | |
|     uint32_t size;
 | |
| } next_dma;
 | |
| 
 | |
| typedef struct NextRtc {
 | |
|     uint8_t ram[32];
 | |
|     uint8_t command;
 | |
|     uint8_t value;
 | |
|     uint8_t status;
 | |
|     uint8_t control;
 | |
|     uint8_t retval;
 | |
| } NextRtc;
 | |
| 
 | |
| struct NeXTState {
 | |
|     MachineState parent;
 | |
| 
 | |
|     uint32_t int_mask;
 | |
|     uint32_t int_status;
 | |
| 
 | |
|     uint8_t scsi_csr_1;
 | |
|     uint8_t scsi_csr_2;
 | |
|     next_dma dma[10];
 | |
|     qemu_irq *scsi_irq;
 | |
|     qemu_irq scsi_dma;
 | |
|     qemu_irq scsi_reset;
 | |
|     qemu_irq *fd_irq;
 | |
| 
 | |
|     uint32_t scr1;
 | |
|     uint32_t scr2;
 | |
| 
 | |
|     NextRtc rtc;
 | |
| };
 | |
| 
 | |
| /* Thanks to NeXT forums for this */
 | |
| /*
 | |
| static const uint8_t rtc_ram3[32] = {
 | |
|     0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
|     0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
 | |
|     0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
 | |
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
 | |
| };
 | |
| */
 | |
| static const uint8_t rtc_ram2[32] = {
 | |
|     0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
 | |
|     0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
 | |
|     0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
 | |
| };
 | |
| 
 | |
| #define SCR2_RTCLK 0x2
 | |
| #define SCR2_RTDATA 0x4
 | |
| #define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
 | |
| 
 | |
| static void nextscr2_write(NeXTState *s, uint32_t val, int size)
 | |
| {
 | |
|     static int led;
 | |
|     static int phase;
 | |
|     static uint8_t old_scr2;
 | |
|     uint8_t scr2_2;
 | |
|     NextRtc *rtc = &s->rtc;
 | |
| 
 | |
|     if (size == 4) {
 | |
|         scr2_2 = (val >> 8) & 0xFF;
 | |
|     } else {
 | |
|         scr2_2 = val & 0xFF;
 | |
|     }
 | |
| 
 | |
|     if (val & 0x1) {
 | |
|         DPRINTF("fault!\n");
 | |
|         led++;
 | |
|         if (led == 10) {
 | |
|             DPRINTF("LED flashing, possible fault!\n");
 | |
|             led = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (scr2_2 & 0x1) {
 | |
|         /* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
 | |
|         if (phase == -1) {
 | |
|             phase = 0;
 | |
|         }
 | |
|         /* If we are in going down clock... do something */
 | |
|         if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
 | |
|                 ((scr2_2 & SCR2_RTCLK) == 0)) {
 | |
|             if (phase < 8) {
 | |
|                 rtc->command = (rtc->command << 1) |
 | |
|                                ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | |
|             }
 | |
|             if (phase >= 8 && phase < 16) {
 | |
|                 rtc->value = (rtc->value << 1) |
 | |
|                              ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | |
| 
 | |
|                 /* if we read RAM register, output RT_DATA bit */
 | |
|                 if (rtc->command <= 0x1F) {
 | |
|                     scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | |
|                     if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
 | |
|                         scr2_2 |= SCR2_RTDATA;
 | |
|                     }
 | |
| 
 | |
|                     rtc->retval = (rtc->retval << 1) |
 | |
|                                   ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | |
|                 }
 | |
|                 /* read the status 0x30 */
 | |
|                 if (rtc->command == 0x30) {
 | |
|                     scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | |
|                     /* for now status = 0x98 (new rtc + FTU) */
 | |
|                     if (rtc->status & (0x80 >> (phase - 8))) {
 | |
|                         scr2_2 |= SCR2_RTDATA;
 | |
|                     }
 | |
| 
 | |
|                     rtc->retval = (rtc->retval << 1) |
 | |
|                                   ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | |
|                 }
 | |
|                 /* read the status 0x31 */
 | |
|                 if (rtc->command == 0x31) {
 | |
|                     scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | |
|                     if (rtc->control & (0x80 >> (phase - 8))) {
 | |
|                         scr2_2 |= SCR2_RTDATA;
 | |
|                     }
 | |
|                     rtc->retval = (rtc->retval << 1) |
 | |
|                                   ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | |
|                 }
 | |
| 
 | |
|                 if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
 | |
|                     scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | |
|                     /* for now 0x00 */
 | |
|                     time_t time_h = time(NULL);
 | |
|                     struct tm *info = localtime(&time_h);
 | |
|                     int ret = 0;
 | |
| 
 | |
|                     switch (rtc->command) {
 | |
|                     case 0x20:
 | |
|                         ret = SCR2_TOBCD(info->tm_sec);
 | |
|                         break;
 | |
|                     case 0x21:
 | |
|                         ret = SCR2_TOBCD(info->tm_min);
 | |
|                         break;
 | |
|                     case 0x22:
 | |
|                         ret = SCR2_TOBCD(info->tm_hour);
 | |
|                         break;
 | |
|                     case 0x24:
 | |
|                         ret = SCR2_TOBCD(info->tm_mday);
 | |
|                         break;
 | |
|                     case 0x25:
 | |
|                         ret = SCR2_TOBCD((info->tm_mon + 1));
 | |
|                         break;
 | |
|                     case 0x26:
 | |
|                         ret = SCR2_TOBCD((info->tm_year - 100));
 | |
|                         break;
 | |
| 
 | |
|                     }
 | |
| 
 | |
|                     if (ret & (0x80 >> (phase - 8))) {
 | |
|                         scr2_2 |= SCR2_RTDATA;
 | |
|                     }
 | |
|                     rtc->retval = (rtc->retval << 1) |
 | |
|                                   ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | |
|                 }
 | |
| 
 | |
|             }
 | |
| 
 | |
|             phase++;
 | |
|             if (phase == 16) {
 | |
|                 if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
 | |
|                     rtc->ram[rtc->command - 0x80] = rtc->value;
 | |
|                 }
 | |
|                 /* write to x30 register */
 | |
|                 if (rtc->command == 0xB1) {
 | |
|                     /* clear FTU */
 | |
|                     if (rtc->value & 0x04) {
 | |
|                         rtc->status = rtc->status & (~0x18);
 | |
|                         s->int_status = s->int_status & (~0x04);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* else end or abort */
 | |
|         phase = -1;
 | |
|         rtc->command = 0;
 | |
|         rtc->value = 0;
 | |
|     }
 | |
|     s->scr2 = val & 0xFFFF00FF;
 | |
|     s->scr2 |= scr2_2 << 8;
 | |
|     old_scr2 = scr2_2;
 | |
| }
 | |
| 
 | |
| static uint32_t mmio_readb(NeXTState *s, hwaddr addr)
 | |
| {
 | |
|     switch (addr) {
 | |
|     case 0xc000:
 | |
|         return (s->scr1 >> 24) & 0xFF;
 | |
|     case 0xc001:
 | |
|         return (s->scr1 >> 16) & 0xFF;
 | |
|     case 0xc002:
 | |
|         return (s->scr1 >> 8)  & 0xFF;
 | |
|     case 0xc003:
 | |
|         return (s->scr1 >> 0)  & 0xFF;
 | |
| 
 | |
|     case 0xd000:
 | |
|         return (s->scr2 >> 24) & 0xFF;
 | |
|     case 0xd001:
 | |
|         return (s->scr2 >> 16) & 0xFF;
 | |
|     case 0xd002:
 | |
|         return (s->scr2 >> 8)  & 0xFF;
 | |
|     case 0xd003:
 | |
|         return (s->scr2 >> 0)  & 0xFF;
 | |
|     case 0x14020:
 | |
|         DPRINTF("MMIO Read 0x4020\n");
 | |
|         return 0x7f;
 | |
| 
 | |
|     default:
 | |
|         DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
 | |
|         return 0x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t mmio_readw(NeXTState *s, hwaddr addr)
 | |
| {
 | |
|     switch (addr) {
 | |
|     default:
 | |
|         DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
 | |
|         return 0x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t mmio_readl(NeXTState *s, hwaddr addr)
 | |
| {
 | |
|     switch (addr) {
 | |
|     case 0x7000:
 | |
|         /* DPRINTF("Read INT status: %x\n", s->int_status); */
 | |
|         return s->int_status;
 | |
| 
 | |
|     case 0x7800:
 | |
|         DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
 | |
|         return s->int_mask;
 | |
| 
 | |
|     case 0xc000:
 | |
|         return s->scr1;
 | |
| 
 | |
|     case 0xd000:
 | |
|         return s->scr2;
 | |
| 
 | |
|     default:
 | |
|         DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
 | |
|         return 0x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     switch (addr) {
 | |
|     case 0xd003:
 | |
|         nextscr2_write(s, val, 1);
 | |
|         break;
 | |
|     default:
 | |
|         DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     DPRINTF("MMIO Write W\n");
 | |
| }
 | |
| 
 | |
| static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     switch (addr) {
 | |
|     case 0x7000:
 | |
|         DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
 | |
|         s->int_status = val;
 | |
|         break;
 | |
|     case 0x7800:
 | |
|         DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
 | |
|         s->int_mask  = val;
 | |
|         break;
 | |
|     case 0xc000:
 | |
|         DPRINTF("SCR1 Write: %x\n", val);
 | |
|         break;
 | |
|     case 0xd000:
 | |
|         nextscr2_write(s, val, 4);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
 | |
| {
 | |
|     NeXTState *ns = NEXT_MACHINE(opaque);
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         return mmio_readb(ns, addr);
 | |
|     case 2:
 | |
|         return mmio_readw(ns, addr);
 | |
|     case 4:
 | |
|         return mmio_readl(ns, addr);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
 | |
|                          unsigned size)
 | |
| {
 | |
|     NeXTState *ns = NEXT_MACHINE(opaque);
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         mmio_writeb(ns, addr, value);
 | |
|         break;
 | |
|     case 2:
 | |
|         mmio_writew(ns, addr, value);
 | |
|         break;
 | |
|     case 4:
 | |
|         mmio_writel(ns, addr, value);
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps mmio_ops = {
 | |
|     .read = mmio_readfn,
 | |
|     .write = mmio_writefn,
 | |
|     .valid.min_access_size = 1,
 | |
|     .valid.max_access_size = 4,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static uint32_t scr_readb(NeXTState *s, hwaddr addr)
 | |
| {
 | |
|     switch (addr) {
 | |
|     case 0x14108:
 | |
|         DPRINTF("FD read @ %x\n", (unsigned int)addr);
 | |
|         return 0x40 | 0x04 | 0x2 | 0x1;
 | |
|     case 0x14020:
 | |
|         DPRINTF("SCSI 4020  STATUS READ %X\n", s->scsi_csr_1);
 | |
|         return s->scsi_csr_1;
 | |
| 
 | |
|     case 0x14021:
 | |
|         DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
 | |
|         return 0x40;
 | |
| 
 | |
|     /*
 | |
|      * These 4 registers are the hardware timer, not sure which register
 | |
|      * is the latch instead of data, but no problems so far
 | |
|      */
 | |
|     case 0x1a000:
 | |
|         return 0xff & (clock() >> 24);
 | |
|     case 0x1a001:
 | |
|         return 0xff & (clock() >> 16);
 | |
|     case 0x1a002:
 | |
|         return 0xff & (clock() >> 8);
 | |
|     case 0x1a003:
 | |
|         /* Hack: We need to have this change consistently to make it work */
 | |
|         return 0xFF & clock();
 | |
| 
 | |
|     default:
 | |
|         DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t scr_readw(NeXTState *s, hwaddr addr)
 | |
| {
 | |
|     DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t scr_readl(NeXTState *s, hwaddr addr)
 | |
| {
 | |
|     DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define SCSICSR_ENABLE  0x01
 | |
| #define SCSICSR_RESET   0x02  /* reset scsi dma */
 | |
| #define SCSICSR_FIFOFL  0x04
 | |
| #define SCSICSR_DMADIR  0x08  /* if set, scsi to mem */
 | |
| #define SCSICSR_CPUDMA  0x10  /* if set, dma enabled */
 | |
| #define SCSICSR_INTMASK 0x20  /* if set, interrupt enabled */
 | |
| 
 | |
| static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value)
 | |
| {
 | |
|     switch (addr) {
 | |
|     case 0x14108:
 | |
|         DPRINTF("FDCSR Write: %x\n", value);
 | |
| 
 | |
|         if (value == 0x0) {
 | |
|             /* qemu_irq_raise(s->fd_irq[0]); */
 | |
|         }
 | |
|         break;
 | |
|     case 0x14020: /* SCSI Control Register */
 | |
|         if (value & SCSICSR_FIFOFL) {
 | |
|             DPRINTF("SCSICSR FIFO Flush\n");
 | |
|             /* will have to add another irq to the esp if this is needed */
 | |
|             /* esp_puflush_fifo(esp_g); */
 | |
|             /* qemu_irq_pulse(s->scsi_dma); */
 | |
|         }
 | |
| 
 | |
|         if (value & SCSICSR_ENABLE) {
 | |
|             DPRINTF("SCSICSR Enable\n");
 | |
|             /*
 | |
|              * qemu_irq_raise(s->scsi_dma);
 | |
|              * s->scsi_csr_1 = 0xc0;
 | |
|              * s->scsi_csr_1 |= 0x1;
 | |
|              * qemu_irq_pulse(s->scsi_dma);
 | |
|              */
 | |
|         }
 | |
|         /*
 | |
|          * else
 | |
|          *     s->scsi_csr_1 &= ~SCSICSR_ENABLE;
 | |
|          */
 | |
| 
 | |
|         if (value & SCSICSR_RESET) {
 | |
|             DPRINTF("SCSICSR Reset\n");
 | |
|             /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
 | |
|             /* qemu_irq_raise(s->scsi_reset); */
 | |
|             /* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */
 | |
| 
 | |
|         }
 | |
|         if (value & SCSICSR_DMADIR) {
 | |
|             DPRINTF("SCSICSR DMAdir\n");
 | |
|         }
 | |
|         if (value & SCSICSR_CPUDMA) {
 | |
|             DPRINTF("SCSICSR CPUDMA\n");
 | |
|             /* qemu_irq_raise(s->scsi_dma); */
 | |
| 
 | |
|             s->int_status |= 0x4000000;
 | |
|         } else {
 | |
|             s->int_status &= ~(0x4000000);
 | |
|         }
 | |
|         if (value & SCSICSR_INTMASK) {
 | |
|             DPRINTF("SCSICSR INTMASK\n");
 | |
|             /*
 | |
|              * int_mask &= ~0x1000;
 | |
|              * s->scsi_csr_1 |= value;
 | |
|              * s->scsi_csr_1 &= ~SCSICSR_INTMASK;
 | |
|              * if (s->scsi_queued) {
 | |
|              *     s->scsi_queued = 0;
 | |
|              *     next_irq(s, NEXT_SCSI_I, level);
 | |
|              * }
 | |
|              */
 | |
|         } else {
 | |
|             /* int_mask |= 0x1000; */
 | |
|         }
 | |
|         if (value & 0x80) {
 | |
|             /* int_mask |= 0x1000; */
 | |
|             /* s->scsi_csr_1 |= 0x80; */
 | |
|         }
 | |
|         DPRINTF("SCSICSR Write: %x\n", value);
 | |
|         /* s->scsi_csr_1 = value; */
 | |
|         return;
 | |
|     /* Hardware timer latch - not implemented yet */
 | |
|     case 0x1a000:
 | |
|     default:
 | |
|         DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value)
 | |
| {
 | |
|     DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
 | |
| }
 | |
| 
 | |
| static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value)
 | |
| {
 | |
|     DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
 | |
| }
 | |
| 
 | |
| static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
 | |
| {
 | |
|     NeXTState *ns = NEXT_MACHINE(opaque);
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         return scr_readb(ns, addr);
 | |
|     case 2:
 | |
|         return scr_readw(ns, addr);
 | |
|     case 4:
 | |
|         return scr_readl(ns, addr);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
 | |
|                         unsigned size)
 | |
| {
 | |
|     NeXTState *ns = NEXT_MACHINE(opaque);
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         scr_writeb(ns, addr, value);
 | |
|         break;
 | |
|     case 2:
 | |
|         scr_writew(ns, addr, value);
 | |
|         break;
 | |
|     case 4:
 | |
|         scr_writel(ns, addr, value);
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps scr_ops = {
 | |
|     .read = scr_readfn,
 | |
|     .write = scr_writefn,
 | |
|     .valid.min_access_size = 1,
 | |
|     .valid.max_access_size = 4,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| #define NEXTDMA_SCSI(x)      (0x10 + x)
 | |
| #define NEXTDMA_FD(x)        (0x10 + x)
 | |
| #define NEXTDMA_ENTX(x)      (0x110 + x)
 | |
| #define NEXTDMA_ENRX(x)      (0x150 + x)
 | |
| #define NEXTDMA_CSR          0x0
 | |
| #define NEXTDMA_NEXT         0x4000
 | |
| #define NEXTDMA_LIMIT        0x4004
 | |
| #define NEXTDMA_START        0x4008
 | |
| #define NEXTDMA_STOP         0x400c
 | |
| #define NEXTDMA_NEXT_INIT    0x4200
 | |
| #define NEXTDMA_SIZE         0x4204
 | |
| 
 | |
| static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
 | |
|                        unsigned int size)
 | |
| {
 | |
|     NeXTState *next_state = NEXT_MACHINE(opaque);
 | |
| 
 | |
|     switch (addr) {
 | |
|     case NEXTDMA_ENRX(NEXTDMA_CSR):
 | |
|         if (value & DMA_DEV2M) {
 | |
|             next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
 | |
|         }
 | |
| 
 | |
|         if (value & DMA_SETENABLE) {
 | |
|             /* DPRINTF("SCSI DMA ENABLE\n"); */
 | |
|             next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
 | |
|         }
 | |
|         if (value & DMA_SETSUPDATE) {
 | |
|             next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
 | |
|         }
 | |
|         if (value & DMA_CLRCOMPLETE) {
 | |
|             next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
 | |
|         }
 | |
| 
 | |
|         if (value & DMA_RESET) {
 | |
|             next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
 | |
|                                                   DMA_ENABLE | DMA_DEV2M);
 | |
|         }
 | |
|         /* DPRINTF("RXCSR \tWrite: %x\n",value); */
 | |
|         break;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
 | |
|         next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
 | |
|         break;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_NEXT):
 | |
|         next_state->dma[NEXTDMA_ENRX].next = value;
 | |
|         break;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_LIMIT):
 | |
|         next_state->dma[NEXTDMA_ENRX].limit = value;
 | |
|         break;
 | |
|     case NEXTDMA_SCSI(NEXTDMA_CSR):
 | |
|         if (value & DMA_DEV2M) {
 | |
|             next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
 | |
|         }
 | |
|         if (value & DMA_SETENABLE) {
 | |
|             /* DPRINTF("SCSI DMA ENABLE\n"); */
 | |
|             next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
 | |
|         }
 | |
|         if (value & DMA_SETSUPDATE) {
 | |
|             next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
 | |
|         }
 | |
|         if (value & DMA_CLRCOMPLETE) {
 | |
|             next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
 | |
|         }
 | |
| 
 | |
|         if (value & DMA_RESET) {
 | |
|             next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
 | |
|                                                   DMA_ENABLE | DMA_DEV2M);
 | |
|             /* DPRINTF("SCSI DMA RESET\n"); */
 | |
|         }
 | |
|         /* DPRINTF("RXCSR \tWrite: %x\n",value); */
 | |
|         break;
 | |
| 
 | |
|     case NEXTDMA_SCSI(NEXTDMA_NEXT):
 | |
|         next_state->dma[NEXTDMA_SCSI].next = value;
 | |
|         break;
 | |
| 
 | |
|     case NEXTDMA_SCSI(NEXTDMA_LIMIT):
 | |
|         next_state->dma[NEXTDMA_SCSI].limit = value;
 | |
|         break;
 | |
| 
 | |
|     case NEXTDMA_SCSI(NEXTDMA_START):
 | |
|         next_state->dma[NEXTDMA_SCSI].start = value;
 | |
|         break;
 | |
| 
 | |
|     case NEXTDMA_SCSI(NEXTDMA_STOP):
 | |
|         next_state->dma[NEXTDMA_SCSI].stop = value;
 | |
|         break;
 | |
| 
 | |
|     case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
 | |
|         next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
 | |
| {
 | |
|     NeXTState *next_state = NEXT_MACHINE(opaque);
 | |
| 
 | |
|     switch (addr) {
 | |
|     case NEXTDMA_SCSI(NEXTDMA_CSR):
 | |
|         DPRINTF("SCSI DMA CSR READ\n");
 | |
|         return next_state->dma[NEXTDMA_SCSI].csr;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_CSR):
 | |
|         return next_state->dma[NEXTDMA_ENRX].csr;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
 | |
|         return next_state->dma[NEXTDMA_ENRX].next_initbuf;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_NEXT):
 | |
|         return next_state->dma[NEXTDMA_ENRX].next;
 | |
|     case NEXTDMA_ENRX(NEXTDMA_LIMIT):
 | |
|         return next_state->dma[NEXTDMA_ENRX].limit;
 | |
| 
 | |
|     case NEXTDMA_SCSI(NEXTDMA_NEXT):
 | |
|         return next_state->dma[NEXTDMA_SCSI].next;
 | |
|     case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
 | |
|         return next_state->dma[NEXTDMA_SCSI].next_initbuf;
 | |
|     case NEXTDMA_SCSI(NEXTDMA_LIMIT):
 | |
|         return next_state->dma[NEXTDMA_SCSI].limit;
 | |
|     case NEXTDMA_SCSI(NEXTDMA_START):
 | |
|         return next_state->dma[NEXTDMA_SCSI].start;
 | |
|     case NEXTDMA_SCSI(NEXTDMA_STOP):
 | |
|         return next_state->dma[NEXTDMA_SCSI].stop;
 | |
| 
 | |
|     default:
 | |
|         DPRINTF("DMA read @ %x\n", (unsigned int)addr);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * once the csr's are done, subtract 0x3FEC from the addr, and that will
 | |
|      * normalize the upper registers
 | |
|      */
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps dma_ops = {
 | |
|     .read = dma_readl,
 | |
|     .write = dma_writel,
 | |
|     .impl.min_access_size = 4,
 | |
|     .valid.min_access_size = 4,
 | |
|     .valid.max_access_size = 4,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * TODO: set the shift numbers as values in the enum, so the first switch
 | |
|  * will not be needed
 | |
|  */
 | |
| void next_irq(void *opaque, int number, int level)
 | |
| {
 | |
|     M68kCPU *cpu = opaque;
 | |
|     int shift = 0;
 | |
|     NeXTState *ns = NEXT_MACHINE(qdev_get_machine());
 | |
| 
 | |
|     /* first switch sets interupt status */
 | |
|     /* DPRINTF("IRQ %i\n",number); */
 | |
|     switch (number) {
 | |
|     /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
 | |
|     case NEXT_FD_I:
 | |
|         shift = 7;
 | |
|         break;
 | |
|     case NEXT_KBD_I:
 | |
|         shift = 3;
 | |
|         break;
 | |
|     case NEXT_PWR_I:
 | |
|         shift = 2;
 | |
|         break;
 | |
|     case NEXT_ENRX_I:
 | |
|         shift = 9;
 | |
|         break;
 | |
|     case NEXT_ENTX_I:
 | |
|         shift = 10;
 | |
|         break;
 | |
|     case NEXT_SCSI_I:
 | |
|         shift = 12;
 | |
|         break;
 | |
|     case NEXT_CLK_I:
 | |
|         shift = 5;
 | |
|         break;
 | |
| 
 | |
|     /* level 5 - scc (serial) */
 | |
|     case NEXT_SCC_I:
 | |
|         shift = 17;
 | |
|         break;
 | |
| 
 | |
|     /* level 6 - audio etherrx/tx dma */
 | |
|     case NEXT_ENTX_DMA_I:
 | |
|         shift = 28;
 | |
|         break;
 | |
|     case NEXT_ENRX_DMA_I:
 | |
|         shift = 27;
 | |
|         break;
 | |
|     case NEXT_SCSI_DMA_I:
 | |
|         shift = 26;
 | |
|         break;
 | |
|     case NEXT_SND_I:
 | |
|         shift = 23;
 | |
|         break;
 | |
|     case NEXT_SCC_DMA_I:
 | |
|         shift = 21;
 | |
|         break;
 | |
| 
 | |
|     }
 | |
|     /*
 | |
|      * this HAS to be wrong, the interrupt handlers in mach and together
 | |
|      * int_status and int_mask and return if there is a hit
 | |
|      */
 | |
|     if (ns->int_mask & (1 << shift)) {
 | |
|         DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
 | |
|         /* return; */
 | |
|     }
 | |
| 
 | |
|     /* second switch triggers the correct interrupt */
 | |
|     if (level) {
 | |
|         ns->int_status |= 1 << shift;
 | |
| 
 | |
|         switch (number) {
 | |
|         /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
 | |
|         case NEXT_FD_I:
 | |
|         case NEXT_KBD_I:
 | |
|         case NEXT_PWR_I:
 | |
|         case NEXT_ENRX_I:
 | |
|         case NEXT_ENTX_I:
 | |
|         case NEXT_SCSI_I:
 | |
|         case NEXT_CLK_I:
 | |
|             m68k_set_irq_level(cpu, 3, 27);
 | |
|             break;
 | |
| 
 | |
|         /* level 5 - scc (serial) */
 | |
|         case NEXT_SCC_I:
 | |
|             m68k_set_irq_level(cpu, 5, 29);
 | |
|             break;
 | |
| 
 | |
|         /* level 6 - audio etherrx/tx dma */
 | |
|         case NEXT_ENTX_DMA_I:
 | |
|         case NEXT_ENRX_DMA_I:
 | |
|         case NEXT_SCSI_DMA_I:
 | |
|         case NEXT_SND_I:
 | |
|         case NEXT_SCC_DMA_I:
 | |
|             m68k_set_irq_level(cpu, 6, 30);
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         ns->int_status &= ~(1 << shift);
 | |
|         cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void next_serial_irq(void *opaque, int n, int level)
 | |
| {
 | |
|     /* DPRINTF("SCC IRQ NUM %i\n",n); */
 | |
|     if (n) {
 | |
|         next_irq(opaque, NEXT_SCC_DMA_I, level);
 | |
|     } else {
 | |
|         next_irq(opaque, NEXT_SCC_I, level);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void next_escc_init(M68kCPU *cpu)
 | |
| {
 | |
|     qemu_irq *ser_irq = qemu_allocate_irqs(next_serial_irq, cpu, 2);
 | |
|     DeviceState *dev;
 | |
|     SysBusDevice *s;
 | |
| 
 | |
|     dev = qdev_new(TYPE_ESCC);
 | |
|     qdev_prop_set_uint32(dev, "disabled", 0);
 | |
|     qdev_prop_set_uint32(dev, "frequency", 9600 * 384);
 | |
|     qdev_prop_set_uint32(dev, "it_shift", 0);
 | |
|     qdev_prop_set_bit(dev, "bit_swap", true);
 | |
|     qdev_prop_set_chr(dev, "chrB", serial_hd(1));
 | |
|     qdev_prop_set_chr(dev, "chrA", serial_hd(0));
 | |
|     qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
 | |
|     qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
 | |
| 
 | |
|     s = SYS_BUS_DEVICE(dev);
 | |
|     sysbus_realize_and_unref(s, &error_fatal);
 | |
|     sysbus_connect_irq(s, 0, ser_irq[0]);
 | |
|     sysbus_connect_irq(s, 1,  ser_irq[1]);
 | |
|     sysbus_mmio_map(s, 0, 0x2118000);
 | |
| }
 | |
| 
 | |
| static void next_cube_init(MachineState *machine)
 | |
| {
 | |
|     M68kCPU *cpu;
 | |
|     CPUM68KState *env;
 | |
|     MemoryRegion *rom = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *mmiomem = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *scrmem = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *dmamem = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
|     NeXTState *ns = NEXT_MACHINE(machine);
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     /* Initialize the cpu core */
 | |
|     cpu = M68K_CPU(cpu_create(machine->cpu_type));
 | |
|     if (!cpu) {
 | |
|         error_report("Unable to find m68k CPU definition");
 | |
|         exit(1);
 | |
|     }
 | |
|     env = &cpu->env;
 | |
| 
 | |
|     /* Initialize CPU registers.  */
 | |
|     env->vbr = 0;
 | |
|     env->sr  = 0x2700;
 | |
| 
 | |
|     /* Set internal registers to initial values */
 | |
|     /*     0x0000XX00 << vital bits */
 | |
|     ns->scr1 = 0x00011102;
 | |
|     ns->scr2 = 0x00ff0c80;
 | |
|     ns->rtc.status = 0x90;
 | |
| 
 | |
|     /* Load RTC RAM - TODO: provide possibility to load contents from file */
 | |
|     memcpy(ns->rtc.ram, rtc_ram2, 32);
 | |
| 
 | |
|     /* 64MB RAM starting at 0x04000000  */
 | |
|     memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
 | |
| 
 | |
|     /* Framebuffer */
 | |
|     dev = qdev_new(TYPE_NEXTFB);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000);
 | |
| 
 | |
|     /* MMIO */
 | |
|     memory_region_init_io(mmiomem, NULL, &mmio_ops, machine, "next.mmio",
 | |
|                           0xD0000);
 | |
|     memory_region_add_subregion(sysmem, 0x02000000, mmiomem);
 | |
| 
 | |
|     /* BMAP memory */
 | |
|     memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
 | |
|                                             true, &error_fatal);
 | |
|     memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
 | |
|     /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
 | |
|     memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
 | |
|     memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);
 | |
| 
 | |
|     /* BMAP IO - acts as a catch-all for now */
 | |
|     memory_region_init_io(scrmem, NULL, &scr_ops, machine, "next.scr",
 | |
|                           0x20000);
 | |
|     memory_region_add_subregion(sysmem, 0x02100000, scrmem);
 | |
| 
 | |
|     /* KBD */
 | |
|     dev = qdev_new(TYPE_NEXTKBD);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000);
 | |
| 
 | |
|     /* Load ROM here */
 | |
|     if (bios_name == NULL) {
 | |
|         bios_name = ROM_FILE;
 | |
|     }
 | |
|     /* still not sure if the rom should also be mapped at 0x0*/
 | |
|     memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
 | |
|     memory_region_add_subregion(sysmem, 0x01000000, rom);
 | |
|     if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
 | |
|         if (!qtest_enabled()) {
 | |
|             error_report("Failed to load firmware '%s'.", bios_name);
 | |
|         }
 | |
|     } else {
 | |
|         uint8_t *ptr;
 | |
|         /* Initial PC is always at offset 4 in firmware binaries */
 | |
|         ptr = rom_ptr(0x01000004, 4);
 | |
|         g_assert(ptr != NULL);
 | |
|         env->pc = ldl_p(ptr);
 | |
|         if (env->pc >= 0x01020000) {
 | |
|             error_report("'%s' does not seem to be a valid firmware image.",
 | |
|                          bios_name);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Serial */
 | |
|     next_escc_init(cpu);
 | |
| 
 | |
|     /* TODO: */
 | |
|     /* Network */
 | |
|     /* SCSI */
 | |
| 
 | |
|     /* DMA */
 | |
|     memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
 | |
|     memory_region_add_subregion(sysmem, 0x02000000, dmamem);
 | |
| }
 | |
| 
 | |
| static void next_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
| 
 | |
|     mc->desc = "NeXT Cube";
 | |
|     mc->init = next_cube_init;
 | |
|     mc->default_ram_size = RAM_SIZE;
 | |
|     mc->default_ram_id = "next.ram";
 | |
|     mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
 | |
| }
 | |
| 
 | |
| static const TypeInfo next_typeinfo = {
 | |
|     .name = TYPE_NEXT_MACHINE,
 | |
|     .parent = TYPE_MACHINE,
 | |
|     .class_init = next_machine_class_init,
 | |
|     .instance_size = sizeof(NeXTState),
 | |
| };
 | |
| 
 | |
| static void next_register_type(void)
 | |
| {
 | |
|     type_register_static(&next_typeinfo);
 | |
| }
 | |
| 
 | |
| type_init(next_register_type)
 |